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Abstract— We consider minimum variance estimation
within the sparse linear Gaussian model (SLGM). A sparse
vector is to be estimated from a linearly transformed version
embedded in Gaussian noise. Our analysis is based on the
theory of reproducing kernel Hilbert spaces (RKHS). After a
characterization of the RKHS associated with the SLGM, we
derive a lower bound on the minimum variance achievable
by estimators with a prescribed bias function, including the
important special case of unbiased estimation. This bound is
obtained via an orthogonal projection of the prescribed mean
function onto a subspace of the RKHS associated with the
SLGM. It provides an approximation to the minimum achievable
variance (Barankin bound) that is tighter than any known bound.
Our bound holds for an arbitrary system matrix, including
the overdetermined and underdetermined cases. We specialize
it to compressed sensing measurement matrices and express
it in terms of the restricted isometry constant. For the special
case of the SLGM given by the sparse signal in noise model, we
derive closed-form expressions of the Barankin bound and of
the corresponding locally minimum variance estimator. Finally,
we compare our bound with the variance of several well-known
estimators, namely, the maximum-likelihood estimator, the hard-
thresholding estimator, and compressive reconstruction using
orthogonal matching pursuit and approximate message passing.

Index Terms— Sparsity, compressed sensing, unbiased
estimation, denoising, RKHS, Cramér–Rao bound, Barankin
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bound, Hammersley–Chapman–Robbins bound, locally
minimum variance unbiased estimator.

I. INTRODUCTION

We study the problem of estimating the value g(x) of a
known vector-valued function g(·) evaluated at an unknown,
nonrandom parameter vector x ∈ R

N. It is known that
x is S-sparse, i.e., at most S of its entries are nonzero, where
S ∈ [N] � {1, . . . , N} (typically S � N). While the sparsity
degree S is known, the set of positions of the nonzero entries
of x, i.e., the support supp(x) ⊆ [N], is unknown. The
estimation of g(x) is based on an observed random vector
y = Hx+n ∈ R

M, with a known system matrix H∈R
M×N and

independent and identically distributed (i.i.d.) Gaussian noise
n ∼ N (0, σ 2I) with known noise variance σ 2 > 0. We assume
that any set of S columns of H is linearly independent.

We refer to the data model described above as the sparse
linear Gaussian model (SLGM). This model is relevant,
e.g., to sparse channel estimation [1], where the sparse
parameter vector x represents the tap coefficients of a linear
time-invariant channel and the system matrix H represents
the training signal. More generally, the SLGM can be used
to describe any type of sparse deconvolution [2]. The special
case of the SLGM obtained for H = I (so that M = N
and y = x + n) will be termed the sparse signal in noise
model (SSNM). The SSNM can be used, e.g., for sparse
channel estimation [1] employing an orthogonal training
signal [3] and for image denoising employing an orthonormal
wavelet basis [4].

A fundamental question, to be considered in this work,
is how to exploit the knowledge of the sparsity degree S.
In contrast to compressed sensing (CS), where the sparsity
is exploited for compression [5]–[8], here we investigate
how much the sparsity assumption helps improve the
accuracy of estimating g(x). Related questions have been
previously addressed for the SLGM in [4] and [9]–[14].
In [9] and [10], bounds on the minimax risk and approximate
minimax estimators whose worst-case risk is close to these
bounds have been derived for the SLGM. An asymptotic
analysis of minimax estimation for the SSNM has been given
in the seminal work [4], [11]. In the context of minimum
variance estimation (MVE), which is relevant to our present
work, lower bounds on the minimum achievable variance
for the SLGM have recently been derived. In particular,
the Cramér–Rao bound (CRB) for the SLGM was developed
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and analyzed in [12] and [13]. In our previous work [14],
we derived lower and upper bounds on the minimum
achievable variance of unbiased estimators for the SSNM.

Here, we use the mathematical framework of reproducing
kernel Hilbert spaces (RKHS) [15]–[17] to derive a lower
bound on the minimum achievable variance that is tighter than
previously proposed bounds. The contributions of this paper
can be summarized as follows.

1) We characterize the RKHS associated with the SLGM.
Using this characterization, we derive a new lower
bound on the variance of estimators for the SLGM. Since
this bound holds for any estimator with a prescribed
mean function, it is also a lower bound on the minimum
achievable variance (also known as Barankin bound)
for the SLGM. The bound is tighter than any known
bound, including the bounds presented in [12]–[14], and
it has an appealing form in that it is a scaled version
of the conventional CRB obtained for the nonsparse
case [18], [19]. Furthermore, this bound holds for arbi-
trary system matrices H, including the overdetermined
and underdetermined cases. We note that our RKHS
approach is quite different from the technique used
in [14], which considered only the SSNM. By contrast,
our approach applies to the general SLGM with arbitrary
system matrix. Also, a shortcoming of the lower bounds
presented in [12] and [14] is the fact that they exhibit
a discontinuity when passing from the case ‖x‖0 = S
(i.e., x has exactly S nonzero entries) to the case ‖x‖0 ≤
S − 1 (i.e., x has less than S nonzero entries). For
unbiased estimation, our bound is a continuous function
of x which exhibits a smooth transition between the two
regimes given by ‖x‖0 = S and ‖x‖0 ≤ S − 1.

2) Based on the fact that the linear CS recovery problem is
an instance of the SLGM, we specialize our lower bound
to CS measurement matrices and express it in terms of
the restricted isometry constant of these matrices.

3) For the SSNM, we derive the minimum achievable
variance (Barankin bound) at a given parameter vector
x = x0 and the locally minimum variance (LMV) esti-
mator, i.e., the (generally impractical) estimator achiev-
ing the minimum variance at x0. Simplified expressions
of the minimum achievable variance and the LMV esti-
mator are obtained for a certain subclass of “diagonal”
bias functions (which includes the unbiased case).

Our bounds on the estimator variance may be useful in
several ways. First, they provide interesting insights regarding
the ease or difficulty of specific estimation scenarios, without
a restriction to specific estimators. Second, they allow an
assessment of the variance behavior of a given estimator.
Finally, they can be used to derive bias functions resulting in
a small variance and, in turn, a small overall estimation error.

A central aspect of this paper is the application of
the mathematical framework of RKHS [15] to the SLGM.
The RKHS framework has been previously applied to classical
estimation in the seminal work reported in [16] and [17],
and our present treatment is substantially based on that work.
However, to the best of our knowledge, the RKHS approach

has not been applied to the SLGM or, more generally, to the
estimation of (functions of) S-sparse vectors. For S < N , the
interior of the set of S-sparse vectors is empty, and thus there
do not exist derivatives in every possible direction. This lack
of a differentiable structure makes the characterization of the
RKHS delicate.

The remainder of this paper is organized as follows.
In Section II, we review some necessary fundamentals: formal
statements of the SLGM and SSNM, basic elements of MVE,
and RKHSs and their application to MVE. In Section III,
we characterize and discuss the RKHS associated with the
SLGM. We then use the RKHS framework to present formal
characterizations of the class of bias functions allowing for
finite-variance estimators for the SLGM, of the minimum
achievable variance (Barankin bound), and of the LMV esti-
mator. We also present a result on the shape of the Barankin
bound. In Section IV, we reinterpret the sparse CRB of
[12] from the RKHS perspective. Furthermore, we present
a new lower variance bound for the SLGM and specialize
it to CS measurement matrices. The important special case
given by the SSNM is discussed in Section V, where we
derive closed-form expressions of the Barankin bound and
the corresponding LMV estimator. Finally, in Section VI,
we present numerical results comparing our theoretical bounds
with the actual variance of some popular estimation schemes.

Notation and Basic Definitions: The sets of real, nonnega-
tive real, natural, and nonnegative integer numbers are denoted
by R, R+, N � {1, 2, . . .}, and Z+ � {0, 1, . . .}, respectively.
For L ∈ N, we define [L] � {1, . . . , L}. The space of all
discrete-argument functions f [·] : T → R (with T ⊆ Z) for
which

∑
l∈T f 2[l] < ∞ is denoted by �2(T ), with associated

norm ‖ f [·]‖T �
√∑

l∈T f 2[l]. The Kronecker delta δk,l is
1 if k = l and 0 otherwise. Given an N-tuple of nonnegative
integers (a “multi-index”) p = (p1 · · · pN )

T ∈ Z
N+ [20], we

define p! �
∏

l∈[N] pl !, | p| �
∑

l∈[N] pl , and xp �
∏

l∈[N] x pl
l

(for x ∈ R
N ). Given two multi-indices p1,p2 ∈ Z

N+ , the
inequality p1 ≤ p2 is understood to hold entrywise, i.e.,
p1,l ≤ p2,l for all l ∈ [N].

Lowercase (uppercase) boldface letters denote column vec-
tors (matrices). The superscript T stands for transposition.
The kth unit vector is denoted by ek , and the identity matrix
by I. For a rectangular matrix H ∈ R

M×N , we denote
by H† its Moore-Penrose pseudoinverse [21], by ker(H) �
{x ∈ R

N |Hx = 0} its kernel (or null space), by span(H) �
{y ∈ R

M | ∃x ∈ R
N : y = Hx} its column span, and by

rank(H) its rank. For a square matrix H ∈ R
N×N , we denote

by tr(H), det(H), and H−1 its trace, determinant, and inverse
(if it exists), respectively. The kth entry of a vector x is denoted
by (x)k = xk , and the entry in the kth row and lth column of
a matrix H by (H)k,l = Hk,l . The support (i.e., set of indices
of all nonzero entries) and the number of nonzero entries of
a vector x are denoted by supp(x) and ‖x‖0 = | supp(x)|,
respectively. Given an index set I ⊆ [N], we denote by
xI ∈ R

N the vector obtained from x ∈ R
N by zeroing all

entries except those indexed by I, and by HI ∈ R
M×|I|

the matrix formed by those columns of H ∈ R
M×N that are

indexed by I.
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II. FUNDAMENTALS

A. The Sparse Linear Gaussian Model

Let x ∈ R
N be an unknown, nonrandom parameter vector

that is known to be S-sparse in the sense that at most S
of its entries are nonzero, i.e., ‖x‖0 ≤ S, with a known
sparsity degree S ∈ [N] (typically S � N). We focus on strict
sparsity instead of approximate sparsity because, as shown in
[22, Sec. 5.6], this is necessary to allow for a smaller minimum
achievable variance compared to the case without any spar-
sity constraints, i.e., the conventional linear Gaussian model.
We express S-sparsity in terms of a parameter set XS , i.e.,

x ∈ XS, with XS �
{
x′ ∈ R

N
∣
∣‖x′‖0 ≤ S

} ⊆ R
N . (1)

In the limiting case where S is equal to the dimension of x,
i.e., S = N , we have XS = R

N . The support supp(x) ⊆ [N] is
unknown. We observe a linearly transformed and noisy version
of x,

y = Hx + n ∈ R
M , (2)

where H ∈ R
M×N is a known matrix and n ∈ R

M is
i.i.d. Gaussian noise, i.e., n ∼ N (0, σ 2I), with known noise
variance σ 2 > 0. It follows that the probability density
function (pdf) of the observation y for a specific value of x is
given by

fH(y; x) = 1

(2πσ 2)M/2 exp

(

− 1

2σ 2 ‖y − Hx‖2
2

)

. (3)

We assume that

spark(H) > S, (4)

where spark(H) denotes the minimum number of linearly
dependent columns of H [23], [24]. Note that we also
allow M < N (this case is relevant to CS methods as
discussed in Section IV-C); however, condition (4) implies that
M ≥ S. Condition (4) is weaker than the standard condition
spark(H) > 2S [12]. However, the standard condition is rea-
sonable since otherwise one can find two different parameter
vectors x1, x2 ∈ XS such that fH(y; x1) = fH(y; x2) for all y,
which implies that one cannot distinguish between x1 and x2
based on knowledge of y.

We consider estimation of the function value g(x) from the
observation y = Hx + n, where the parameter function g(·) :
XS → R

P is a known deterministic function. The estimate
ĝ = ĝ(y) ∈ R

P is derived from y via a deterministic estimator
ĝ(·) : R

M → R
P. We allow ĝ ∈ R

P without constraining ĝ to
be in g(XS) � {g(x)|x ∈ XS}, even though it is known that
x ∈ XS . The reason for not enforcing the sparsity constraint
ĝ ∈ g(XS) is twofold: first, it complicates the analysis; second,
it typically results in a worse achievable estimator performance
(in terms of mean squared error) since it restricts the class
of allowed estimators. In particular, it has been shown that
a sparsity constraint can increase the worst-case risk of the
resulting estimators significantly [25].

Estimation of the parameter vector x itself is a special case
obtained by choosing g(x) = x, which implies P = N . Again,
we allow x̂ ∈ R

N and do not constrain x̂ to be in XS .

In what follows, it will be convenient to denote
the SLGM estimation problem by the triple ESLGM �(
XS, fH(y; x), g(·)), where fH(y; x) is given by (3) and will

be referred to as the statistical model. A related estimation
problem is based on the linear Gaussian model (LGM) [18],
[26]–[28], for which x ∈ R

N rather than x ∈ XS ; this problem
will be denoted by ELGM �

(
R

N, fH(y; x), g(·)). The SLGM
shares with the LGM the observation model (2) and the
statistical model (3); the two models coincide when S = N .
Another important special case of the SLGM is given by the
SSNM, in which H=I, M = N , and y = x + n, where x∈XS

and n ∼ N (0, σ 2I). The SSNM estimation problem will be
denoted as ESSNM �

(
XS, fI(y; x), g(·)).

B. Basic Elements of Minimum Variance Estimation

Let us consider1 an arbitrary estimation problem E =(
X , f (y; x), g(·)) based on an arbitrary parameter set X ⊆ R

N

and an arbitrary statistical model f (y; x). The general goal in
the design of an estimator ĝ(·) is that ĝ(y) should be close
to the true value g(x). A frequently used criterion for assessing
the quality of an estimator is the mean squared error (MSE)
defined as

ε � Ex
{‖ĝ(y)− g(x)‖2

2

} =
∫

RM
‖ĝ(y)− g(x)‖2

2 f (y; x) dy.

Here, Ex{·} denotes the expectation operation with respect to
the pdf f (y; x); the subscript in Ex indicates the dependence
on the parameter vector x parametrizing f (y; x). We will
write ε(ĝ(·); x) to indicate the dependence of the MSE on
the estimator ĝ(·) and the parameter vector x. In general,
there does not exist an estimator ĝ(·) that minimizes the MSE
simultaneously for all x ∈ X [18], [30]. This follows from
the fact that minimizing the MSE at a given parameter vector
x0 ∈ X always yields zero MSE; this is achieved by the trivial
estimator ĝ(y) ≡ g(x0), which ignores the observation y.

A popular rationale for the design of good estimators is
MVE. The MSE can be decomposed as

ε(ĝ(·); x) = ‖b(ĝ(·); x)‖2
2 + v(ĝ(·); x), (5)

with the bias b(ĝ(·); x) � Ex{ĝ(y)} − g(x) and the variance

v(ĝ(·); x) � Ex
{∥
∥ĝ(y)− Ex{ĝ(y)}

∥
∥2

2

}
. In MVE, one specifies

the bias on the entire parameter set X , i.e., one requires that

b(ĝ(·); x) = c(x), for all x ∈ X ,

with a prescribed bias function c(·) : X → R
P, and one

attempts to minimize the variance v(ĝ(·); x) among all esti-
mators with the given bias function c(·). Fixing the bias
is equivalent to fixing the estimator’s mean function, i.e.,
Ex

{
ĝ(y)

} = γ (x) for all x ∈ X , with the prescribed
mean function γ (x) � c(x) + g(x). Unbiased estimation
is obtained as a special case for c(x) ≡ 0 or equivalently
γ (x) ≡ g(x). Constraining the bias can be viewed as a kind
of “regularization” of the set of possible estimators [19], [30],
since it excludes useless estimators such as ĝ(y) ≡ g(x0).

1This introductory section closely parallels [29, Sec. II-A]. We include
it nevertheless because it constitutes an important basis for our subsequent
discussion.
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Another justification for considering a fixed bias function
is that under mild conditions, for a large number L of
i.i.d. observations {yi }i∈[L], the bias term dominates in the
decomposition (5). Thus, in order to achieve a small MSE
in that case, an estimator has to be at least asymptotically
unbiased, i.e., one has to require that, for a large number of
observations, b(ĝ(·); x) ≈ 0 for all x ∈ X .

For an estimation problem E = (
X , f (y; x), g(·)), a fixed

parameter vector x0 ∈ X , and a prescribed bias function c(·) :
X → R

P, we define the set of allowed estimators by

A(c(·), x0) �
{
ĝ(·) ∣∣ v(ĝ(·); x0) < ∞,

b(ĝ(·); x) = c(x) ∀x ∈ X
}
.

We call a bias function c(·) valid for the estimation problem E
at x0 ∈ X if the set A(c(·), x0) is nonempty, which means that
there is at least one estimator ĝ(·) that has finite variance at x0
and whose bias function equals c(·), i.e., b(ĝ(·); x) = c(x) for
all x ∈ X . For the SLGM, in particular, this definition trivially
entails the following fact: If a bias function c(·) : XS → R

P

is valid for S = N , it is also valid for S < N .
It follows from (5) that, for a fixed bias function c(·),

minimizing the MSE ε(ĝ(·); x0) is equivalent to minimizing
the variance v(ĝ(·); x0). Let us denote the minimum (strictly
speaking, infimum) variance at x0 for bias function c(·) by

M(c(·), x0) � inf
ĝ(·)∈A(c(·),x0)

v(ĝ(·); x0). (6)

If A(c(·), x0) is empty, i.e., if c(·) is not valid, we set
M(c(·), x0) � ∞. Any estimator ĝ(c(·),x0)(·) ∈ A(c(·), x0) that
achieves the infimum in (6), i.e., for which

v
(
ĝ(c(·),x0)(·); x0

) = M(c(·), x0), (7)

is called an LMV estimator at x0 for bias function c(·)
[16], [17], [19]. The corresponding minimum variance
M(c(·), x0) is called the minimum achievable variance at
x0 for bias function c(·). The minimization problem defined
by (6) is referred to as a minimum variance problem (MVP).
From its definition in (6), it follows that M(c(·), x0) is a lower
bound on the variance at x0 of any estimator with bias function
c(·), i.e., ĝ(·) ∈ A(c(·), x0) implies v(ĝ(·); x0) ≥ M(c(·), x0).
This is sometimes referred to as the Barankin bound [17];
it is the tightest possible lower bound on the variance at x0 of
estimators with bias function c(·).

Finally, let ĝk(·) �
(
ĝ(·))k and ck(·) �

(
c(·))k . The variance

of the vector estimator ĝ(·) can be decomposed as

v(ĝ(·); x) =
∑

k∈[P]
v(ĝk(·); x), (8)

where v(ĝk(·); x) � Ex
{[

ĝk(y)− Ex{ĝk(y)}
]2} is the variance

of the kth estimator component ĝk(·). Furthermore, ĝ(·) ∈
A(c(·), x0) if and only if ĝk(·) ∈ A(ck(·), x0) for all k ∈ [P].
This shows that the MVP (6) can be reduced to P separate
scalar MVPs

M(ck(·), x0) � inf
ĝk(·)∈A(ck(·),x0)

v(ĝk(·); x0), k ∈ [P],
each requiring the optimization of a single scalar compo-
nent ĝk(·) of ĝ(·). Therefore, without loss of generality, we
will hereafter assume that the parameter function g(x) is
scalar-valued, i.e., P =1 and g(x) = g(x).

C. RKHS Fundamentals

As mentioned in Section I, the existing variance bounds
for the SLGM are not maximally tight. Using the theory of
RKHSs will allow us to derive a variance bound that is tighter
than existing bounds. For the SSNM (see Section V), the
RKHS approach even yields a closed-form characterization of
the Barankin bound and of the accompanying LMV estimator.
Next, we present a review (similar in part to [29, Sec. II-B])
of some fundamentals of the theory of RKHSs and of the appli-
cation of RKHSs to MVE. These fundamentals will provide a
framework for our analysis of the SLGM in later sections.

An RKHS is associated with a kernel function R(·, ·) :
X ×X → R, where X is an arbitrary set. The defining prop-
erties of a kernel function are (i) symmetry, i.e., R(x1, x2) =
R(x2, x1) for all x1, x2 ∈ X , and (ii) positive semidefiniteness
in the sense that, for every finite set {x1, . . . , xD} ⊆ X ,
the matrix R ∈ R

D×D with entries Rm,n = R(xm , xn)
is positive semidefinite. A fundamental result [15, p. 344]
states that for any such kernel function R, there exists an
RKHS H(R), which is a Hilbert space equipped with an
inner product 〈·, ·〉H(R) and satisfying the following two
properties: (i) R(·, x) ∈ H(R) for any x ∈ X (here, R(·, x)
denotes the function fx(x′) = R(x′, x) for fixed x ∈ X ).
(ii) For any function f (·) ∈ H(R) and any x ∈ X ,

〈
f (·),

R(·, x)
〉
H(R) = f (x). This reproducing property defines the

inner product 〈 f1, f2〉H(R) for all f1(·), f2(·) ∈ H(R), because
any f (·) ∈ H(R) can be expanded into the set of functions
{R(·, x)}x∈X . The induced norm is ‖ f ‖H(R) = √〈 f, f 〉H(R) .

RKHS theory provides a powerful mathematical framework
for MVE [16]. Given an arbitrary estimation problem E =(
X , f (y; x), g(·)) and a parameter vector x0 ∈ X for which
f (y; x0) �= 0, a kernel function RE,x0(·, ·) and, in turn, an
RKHS HE,x0 can be defined as follows. We first define the
likelihood ratio

ρx0(y, x) � f (y; x)
f (y; x0)

, (9)

which is considered as a random variable (since it is a function
of the random vector y) that is parametrized by x ∈ X . Next,
we define the Hilbert space LE,x0 as the closure of the linear
span of the set of random variables

{
ρx0(y, x)

}
x∈X . The inner

product in LE,x0 is defined by
〈
ρx0(y, x1), ρx0(y, x2)

〉
RV � Ex0

{
ρx0(y, x1) ρx0(y, x2)

}

= Ex0

{
f (y; x1) f (y; x2)

f 2(y; x0)

}

.

(It can be shown that it is sufficient to define 〈·, ·〉RV for
the random variables

{
ρx0(y, x)

}
x∈X [16].) From now on,

we consider only estimation problems E = (
X , f (y; x), g(·))

such that
〈
ρx0(y, x1), ρx0(y, x2)

〉
RV < ∞ for all x1, x2 ∈ X ,

or, equivalently, Ex0

{
f (y;x1) f (y;x2)

f 2(y;x0)

}
< ∞ for all x1, x2 ∈ X .

Thus, 〈·, ·〉RV is well defined. We can interpret the inner
product 〈·, ·〉RV : LE,x0 × LE,x0 → R as a kernel function
RE,x0(·, ·) : X ×X → R:

RE,x0(x1, x2) �
〈
ρx0(y, x1), ρx0(y, x2)

〉
RV
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= Ex0

{
f (y; x1) f (y; x2)

f 2(y; x0)

}

. (10)

The RKHS associated with the estimation problem E =(
X , f (y; x), g(·)) and the parameter vector x0 ∈ X is then

defined to be the RKHS induced by the kernel function
RE,x0(·, ·). We will denote this RKHS as HE,x0 , i.e., HE,x0 �
H(RE,x0). As shown in [16], the two Hilbert spaces LE,x0 and
HE,x0 are isometric, and a specific congruence, i.e., isometric
mapping J[·] : HE,x0 → LE,x0 is given by

J[RE,x0(·, x)] = ρx0(·, x). (11)

A fundamental relation of the RKHS HE,x0 with MVE is
established by the following central result [16], [17]. Con-
sider an estimation problem E = (

X , f (y; x), g(·)), a fixed
parameter vector x0 ∈ X , and a prescribed bias function
c(·) : X → R, corresponding to the mean function
γ (·) = c(·)+ g(·). Then, the following holds:

1) The bias function c(·) is valid for E at x0 if and only if
γ (·) belongs to the RKHS HE,x0 , i.e.,

c(·) valid for E at x0 ⇐⇒ c(·) = γ (·)− g(·)
for some γ (·) ∈ HE,x0 . (12)

2) If the bias function c(·) is valid for E at x0, then the
minimum achievable variance at x0 (Barankin bound) is
given by

M(c(·), x0) = ‖γ (·)‖2
HE,x0

− γ 2(x0), (13)

and the LMV estimator at x0 is

ĝ(c(·),x0)(·) = J[γ (·)]. (14)

According to the first result, the RKHS HE,x0 can be inter-
preted as the set of mean functions γ (x) = Ex{ĝ(y)} of all esti-
mators ĝ(·) with a finite variance at x0, i.e., v(ĝ(·); x0) < ∞.
Furthermore, we can use (13) to establish a large class of lower
bounds on the minimum achievable variance M(c(·), x0).
Indeed, let U ⊆ HE,x0 be an arbitrary subspace of HE,x0 and
let PU γ (·) denote the orthogonal projection of γ (·) onto U .
We then have ‖γ (·)‖2

HE,x0
≥ ‖PU γ (·)‖2

HE,x0
[31, Ch. 4] and

thus, from (13),

M(c(·), x0) ≥ ‖PU γ (·)‖2
HE,x0

− γ 2(x0). (15)

Some well-known lower bounds on the estimator variance,
such as the Cramér–Rao and Bhattacharya bounds, are
obtained from (15) by specific choices of the subspace U [29].

III. RKHS-BASED ANALYSIS OF MINIMUM VARIANCE

ESTIMATION FOR THE SLGM

In this section, we apply the RKHS framework to the SLGM
estimation problem ESLGM = (

XS, fH(y; x), g(·)). Thus, the
parameter set is the set of S-sparse vectors, X = XS ⊆
R

N in (1), and the statistical model is given by f (y; x) =
fH(y; x) in (3). More specifically, we consider MVE at a
given parameter vector x0 ∈XS , for a prescribed bias function
c(·) : XS → R. We recall that the set of allowed estimators,
A(c(·), x0), consists of all estimators ĝ(·) with finite variance

at x0, i.e., v(ĝ(·); x0) < ∞, whose bias function equals c(·),
i.e., b(ĝ(·); x) = c(x) for all x ∈ XS .

Our results can be summarized as follows. We characterize
the RKHS associated with the SLGM and employ it to analyze
the associated MVP. Using this characterization, we provide
conditions on the bias function c(·) such that the minimum
achievable variance is finite, i.e., we characterize the set of
valid bias functions (cf. Section II-B). Furthermore, we present
expressions of the Barankin bound MSLGM(c(·), x0) and of
the corresponding LMV estimator ĝ(c(·),x0)(·) for an arbitrary
valid bias function c(·). Since these expressions are difficult
to evaluate in general, we finally derive a lower bound on
the minimum achievable variance. This lower bound is also
a lower bound on the variance of any estimator with the
prescribed bias function. Finally, we present a result on the
shape of the Barankin bound.

In our analysis of the SLGM, the RKHS associated with
the LGM will play an important role. Consider X = R

N

and f (y; x) = fH(y; x) as defined in (3), where the system
matrix H ∈ R

M×N is not required to satisfy condition (4). The
likelihood ratio (9) for f (y; x) = fH(y; x) is obtained as

ρLGM,x0(y, x) = fH(y; x)
fH(y; x0)

= exp

(

− 1

2σ 2

[
2yT H(x0− x)+ ‖Hx‖2

2 − ‖Hx0‖2
2

]
)

.

(16)

Furthermore, from (10), the kernel associated with the LGM
follows as

RLGM,x0(·, ·) : R
N× R

N → R ;
RLGM,x0(x1, x2) = exp

(
1

σ 2 (x2− x0)
T HT H(x1− x0)

)

. (17)

A. The RKHS Associated With the SLGM

Let us consider the SLGM estimation problem ESLGM =(
XS, fH(y; x), g(·)) and the corresponding LGM estimation

problem ELGM = (
R

N, fH(y; x), g(·)) with the same system
matrix H ∈ R

M×N satisfying condition (4) and with the
same noise variance σ 2. For an S-sparse parameter vector
x0 ∈ XS , let HSLGM,x0 and HLGM,x0 denote the RKHSs
associated with the estimation problems ESLGM and ELGM,
respectively. In what follows, we will use the thin singular
value decomposition (SVD) of the system matrix H, i.e.,
H = U�VT, where U ∈ R

M×D with UT U = I, V ∈ R
N×D

with VT V = I, and � ∈ R
D×D is a diagonal matrix with

positive diagonal entries (�)k,k > 0 [21]. Here, D = rank(H).
We also define H̃ � V�−1.

Using (10) and (3), the kernel underlying HSLGM,x0 is
obtained as

RSLGM,x0(·, ·) : XS ×XS → R ;
RSLGM,x0(x1, x2) = exp

(
1

σ 2 (x2− x0)
T HT H(x1− x0)

)

. (18)

Comparing with the kernel RLGM,x0(·, ·) in (17), we conclude
that RSLGM,x0(·, ·) is the restriction of RLGM,x0(·, ·) to the
subdomain XS ×XS ⊆ R

N× R
N . This suggests, in turn, that
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the two RKHSs HSLGM,x0 and HLGM,x0 are closely related.
In fact, using results from [15, p. 351] yields the following
characterization of HSLGM,x0 :

Theorem III.1: Let x0 ∈XS .
1) The RKHS HSLGM,x0 consists of the restrictions of all

functions f̃ (·) : R
N → R contained in HLGM,x0 to the

subdomain XS ⊆ R
N, i.e.,

HSLGM,x0 = {
f (·) = f̃ (·)∣∣XS

∣
∣ f̃ (·) ∈ HLGM,x0

}
. (19)

The functions of the RKHS HLGM,x0 can be expressed as

f̃ (x) = f̃a(x) = exp

(
1

2σ 2 ‖Hx0‖2
2 − 1

σ 2 xT HT Hx0

)

×
∑

p∈Z
D+

a[p]
√

p!
(

1

σ
H̃†x

)p

, (20)

with some coefficient sequence a[p] ∈ �2(ZD+).
2) The norm of a function f (·) ∈ HSLGM,x0 is equal to the

minimum of the norms of all functions f̃a(·) ∈ HLGM,x0

whose restriction to XS equals f (·), i.e.,

‖ f (·)‖HSLGM,x0
= min

f̃a(·)∈HLGM,x0

f̃a(·)
∣
∣
XS

= f (·)

‖ f̃a(·)‖HLGM,x0
. (21)

The norm of a function f̃a(·) ∈ HLGM,x0 (with coefficient
sequence a[p]) is given by

‖ f̃a(·)‖HLGM,x0
= ‖a[·]‖�2(ZD+ ), (22)

where ‖a[·]‖2
�2(ZD+ )

�
∑

p∈Z
D+ a2[p].

Proof: see Appendix A.
An immediate consequence of Theorem III.1 is the obvious

fact that the minimum achievable variance for the SLGM can
never exceed that for the LGM (if the prescribed bias function
for the SLGM is the restriction of the prescribed bias function
for the LGM). Indeed, prescribing the bias for all x ∈ R

N

(as is done within the LGM), instead of prescribing it only
for the sparse vectors x ∈ XS (as is done within the SLGM)
can only result in a higher (or equal) minimum achievable
variance. More formally, let c(·) : R

N → R be the LGM
bias function and γ (·) = c(·)+ g(·) the corresponding mean
function, and recall that x0 ∈XS . Then we have

MSLGM
(
c(·)∣∣XS

, x0
)

(13)= ∥
∥γ (·)∣∣XS

∥
∥2
HSLGM,x0

− γ 2(x0)

(21)≤ ‖γ (·)‖2
HLGM,x0

− γ 2(x0)
(13)= MLGM(c(·), x0).

B. The Class of Valid Bias Functions

The class of valid bias functions for the SLGM estima-
tion problem ESLGM = (

XS, fH(y; x), g(·)) at x0 ∈ XS is
characterized by the following corollary of Theorem III.1
(see [22, Th. 5.3.1]):

Corollary III.2: A bias function c(·) : XS → R is valid for
ESLGM = (

XS, fH(y; x), g(·)) at x0 ∈XS if and only if it can
be expressed as

c(x) = exp

(
1

2σ 2 ‖Hx0‖2
2 − 1

σ 2 xT HT Hx0

)

×
∑

p∈Z
D+

a[p]
√

p!
(

1

σ
H̃†x

)p

− g(x), x∈XS , (23)

with some coefficient sequence a[p] ∈ �2(ZD+).
Proof: According to (12), any valid bias function c(·) is

given by c(·) = γ (·) − g(·) with some γ (·) ∈ HSLGM,x0 .
The statement then follows by the characterization (20) of the
functions belonging to HSLGM,x0 . �

Corollary III.2 implies that the mean function γ (·) = c(·)+
g(·) corresponding to a bias function c(·) that is valid for
ESLGM at x0 ∈XS is of the form

γ (x) = exp

(
1

2σ 2 ‖Hx0‖2
2 − 1

σ 2 xT HT Hx0

)

×
∑

p∈Z
D+

a[p]
√

p!
(

1

σ
H̃†x

)p

, x∈XS , (24)

with some coefficient sequence a[p] ∈ �2(ZD+). Note that
the condition a[p] ∈ �2(ZD+) requires the coefficients a[p] to
decay sufficiently fast with increasing ‖p‖∞. The function on
the right-hand side in (24) is analytic on the domain XS in the
sense2 that it can be locally represented at any point x ∈XS

by a convergent power series. Thus, in particular, the mean
function γ (x) = Ex{ĝ(y)} of any finite-variance estimator ĝ(y)
is necessarily an analytic function. This agrees with the general
result about the mean function of estimators for exponential
families presented in [32, Lemma 2.8]. (Note that the statistical
model of the SLGM is an exponential family.)

C. Minimum Achievable Variance (Barankin Bound)
and LMV Estimator

Let us consider the MVP (6) at a given parameter vec-
tor x0 ∈ XS for an SLGM estimation problem ESLGM =(
XS, fH(y; x), g(·)) and for a prescribed bias function c(·) :
XS → R, which is known to be valid. The Barankin bound
at x0, denoted MSLGM(c(·), x0) (cf. (6)), and the corresponding
LMV estimator ĝ(c(·),x0)(·) (cf. (7)) are characterized by the
following corollary of Theorem III.1 [22, Th. 5.3.1].

Corollary III.3: Consider an SLGM estimation problem
ESLGM = (

XS, fH(y; x), g(·)) and a prescribed bias function
c(·) : XS → R that is valid for ESLGM at x0 ∈XS. Then:

1) The minimum achievable variance at x0 is given by

MSLGM(c(·), x0) = min
a[·]∈C(c)

‖a[·]‖2
�2(ZD+ )

− γ 2(x0),

(25)

where γ (·) = c(·) + g(·) and C(c) ⊆ �2(ZD+) denotes
the set of coefficient sequences a[p] ∈ �2(ZD+) that are
consistent with (23).

2) The function ĝ(·) : R
M → R given by

ĝ(y) = exp

(

− 1

2σ 2 ‖Hx0‖2
2

)∑

p∈Z
D+

a[p]
√

p! χp(y), (26)

2Note that a function with domain XS , with S< N , cannot be analytic in
the conventional sense since the domain of an analytic function has to be
open by definition [20, Definition 2.2.1].
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with an arbitrary coefficient sequence a[·] ∈ C(c) and

χp(y) �
∂p[ρLGM,x0(y, σ H̃z) exp

( 1
σ xT

0 HT HH̃z
)]

∂zp

∣
∣
∣
∣
z=0
,

where ρLGM,x0(y, x) is given by (16), is an allowed
estimator at x0 for c(·), i.e., ĝ(·) ∈ A(c(·), x0).

3) The LMV estimator at x0, ĝ(c(·),x0)(·), is given by (26)
using the unique coefficient sequence

a0[p] = argmin
a[·]∈C(c)

‖a[·]‖�2(ZD+ ).

Proof: see Appendix B.
The kernel RSLGM,x0(·, ·) given by (18) is point-

wise continuous with respect to the parameter x0, i.e.,
limx′

0→x0
RSLGM,x′

0
(x1, x2) = RSLGM,x0(x1, x2) for all

x0, x1, x2 ∈ XS . Therefore, applying [29, Th. III.6] to the
SLGM yields the following result.

Corollary III.4: Consider the SLGM with parameter func-
tion g(x)= xk and a prescribed bias function c(·) : XS → R

that is valid for ESLGM = (
XS, fH(y; x), g(x) = xk

)
at

each parameter vector x0 ∈ XS. If c(·) is continuous, then
the minimum achievable variance MSLGM(c(·), x0) is a lower
semi-continuous3 function of x0.

Proof: see Appendix C.
In Section IV-A, we will use Corollary III.4 to show that

the sparse CRB derived in [12] cannot be tight in general.

IV. LOWER VARIANCE BOUNDS FOR THE SLGM

While Corollary III.3 provides a mathematically com-
plete characterization of the minimum achievable variance
and the LMV estimator, the corresponding expressions are
somewhat difficult to evaluate in general. Therefore, we
next present lower bounds on the minimum achievable vari-
ance MSLGM(c(·), x0) for the estimation problem ESLGM =(
XS, fH(y; x), g(x)= xk

)
with some k ∈ [N]. These bounds

are easier to evaluate. As mentioned before, they are also lower
bounds on the variance of any estimator having the prescribed
bias function. Our assumption that g(x)= xk is no restriction
because, according to [22, Th. 2.3.1], the MVP for a given
parameter function g(x) and prescribed bias function c(x) is
equivalent to the MVP for parameter function g′(x) = xk

and prescribed bias function c′(x) = c(x) + g(x) − xk .
In particular,4 c′(x) is valid for g′(x) = xk if and only if
c(x) = c′(x) − g(x) + xk is valid for g(x). Therefore, any
MVP can be reduced to an equivalent MVP with g(x) = xk

and an appropriately modified prescribed bias function.
We assume that the prescribed bias function c(·) is valid for

ESLGM = (
XS, fH(y; x), g(x)= xk

)
. This validity assumption

3A definition of lower semi-continuity is provided in Appendix C-B.
4Indeed, if c′(x) is valid at x0 for the MVP with parameter function xk ,

there exists a finite-variance estimator ĝ(·) with mean function Ex{ĝ(y)} =
c′(x)+ xk . For the MVP with parameter function g(·), that estimator ĝ(·) has
the bias function

b(ĝ(·), x) = Ex{ĝ(y)} − g(x) = c′(x)+ xk − g(x) = c(x).

Thus, there exists a finite-variance estimator with bias function c(x) = c′(x)−
g(x)+ xk , which implies that the bias function c(·) is valid for the MVP with
parameter function g(·). This reasoning can also be performed in the reverse
direction. Note that, trivially, the estimator ĝ(·) has the same variance at x0
for both MVPs.

is no real restriction either, since our lower bounds are finite
and therefore are lower bounds also if MSLGM(c(·), x0) = ∞,
which, by our definition in Section II-B, is the case if c(·) is
not valid.

The lower bounds to be presented are based on the generic
lower bound (15), i.e., they are of the form

MSLGM(c(·), x0) ≥ ‖PU γ (·)‖2
HSLGM,x0

− γ 2(x0), (27)

for some subspace U ⊆ HSLGM,x0 . Here, the prescribed mean
function γ (·) : XS → R, given by γ (x) = c(x) + xk , is an
element of HSLGM,x0 since c(·) is assumed valid.

A. The Sparse CRB

The first bound is an adaptation of the CRB [18], [19]
[27], [29] to the sparse setting and has been previously derived
in a slightly different form in [12]. Consider the estimation
problem ESLGM = (

XS, fH(y; x), g(x) = xk
)

with a system
matrix H ∈ R

M×N satisfying (4). Let x0 ∈ XS . If the
prescribed bias function c(·) : XS → R is such that the partial
derivatives ∂c(x)

∂xl

∣
∣
x=x0

exist for all l ∈ [N], then

MSLGM(c(·), x0)

≥
{
σ 2 bT (HT H)†b, if ‖x0‖0 ≤ S−1

σ 2 bT
x0
(HT

x0
Hx0)

†bx0, if ‖x0‖0 = S.
(28)

Here, in the case ‖x0‖0 ≤ S−1, b ∈ R
N is given by bl � δk,l +

∂c(x)
∂xl

∣
∣
x=x0

, l ∈ [N], and in the case ‖x0‖0 = S, bx0 ∈ R
S and

Hx0 ∈ R
M×S consist of those entries of b and columns of H,

respectively that are indexed by supp(x0) ≡ {k1, . . . , kS}, i.e.,
(bx0)i = bki and (Hx0)m,i = (H)m,ki , i ∈ [S].

As shown in [22, Th. 5.4.1], the bound (28) for ‖x0‖0 ≤
S − 1 is obtained from the generic bound (27) using the
subspace U = span

{
u0(·), {ul(·)}l∈[N]

}
, where

u0(·) � RSLGM,x0(·, x0),

ul(·) � ∂RSLGM,x0(·, x2)

∂(x2)l

∣
∣
∣
∣
x2=x0

, l ∈[N],

with RSLGM,x0(·, ·) given by (18) (note that RSLGM,x0(·, ·)
is differentiable), and the bound (28) for ‖x0‖0 = S is
obtained from (27) using the subspace U = span

{
u0(·),

{ul(·)}l∈supp(x0)

}
. This establishes a new, RKHS-based inter-

pretation of the bound in [12] in terms of the projection
of the prescribed mean function γ (x) = c(x) + xk onto an
RKHS-related subspace U . We note that the bound in [12]
was formulated as a bound on the variance v(x̂(·); x0) of a
vector-valued estimator x̂(·) of x, and not only of the kth
entry xk . Consistent with (8), that bound can be reobtained
by summing our bound in (28) (with c(·) = ck(·)) over all
k ∈ [N]. Thus, the two bounds are equivalent.

An important aspect of the bound in (28) is the fact that it
is not a continuous function of x0 on XS in general. Indeed,
for the case H = I and c(·) ≡ 0, which has been considered
in [14], it can be verified that the bound is a strictly upper
semi-continuous function of x0: for example, for M = N = 2,
H = I, c(·) ≡ 0, S = 1, k = 2, and x0 = a · (1 0)T with
a ∈ R+, the bound is equal to 1 for a = 0 (case of ‖x0‖0 ≤
S − 1) but equal to 0 for all a > 0 (case of ‖x0‖0 = S).
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However, by Corollary III.4, the minimum achievable vari-
ance MSLGM(c(·), x0) is a lower semi-continuous function
of x0. Since a function cannot be simultaneously lower semi-
continuous and strictly upper semi-continuous, it follows that
the sparse CRB in (28) cannot be tight in general, i.e., it cannot
be equal to MSLGM(c(·), x0) for all x0 ∈ XS . This means that
we have a strict inequality in (28) at least for some x0 ∈ XS .

Let us finally consider the special case where M ≥ N and
H ∈ R

M×N has full rank, i.e., rank(H) = N . The least-
squares (LS) estimator [18], [19], [27] of xk is given by
x̂LS,k(y) = eT

k H†y; it is unbiased and its variance is

v(x̂LS,k(·); x0) = σ 2 eT
k (H

T H)−1ek . (29)

On the other hand, for unbiased estimation, i.e., c(·)≡0, our
lower bound for ‖x0‖0 ≤ S−1 in (28) becomes MSLGM(c(·)≡
0, x0) ≥ σ 2 bT (HT H)†b = σ 2 eT

k (H
T H)−1ek . Comparing

with (29), we conclude that our bound is tight and the
minimum achievable variance is in fact

MSLGM(c(·)≡ 0, x0) = σ 2 eT
k (H

T H)−1ek,

which is achieved by the LS estimator. Thus, for M ≥ N
and rank(H) = N , the LS estimator is the5 LMV unbiased
estimator for the SLGM at each parameter vector x0 ∈ XS with
‖x0‖0 ≤ S−1. It is interesting to note that the LS estimator does
not exploit the sparsity information expressed by the parameter
set XS , i.e., the knowledge that ‖x‖0 ≤ S, and that it has the
constant variance (29) for each x0 ∈ XS (in fact, even for x0 ∈
R

N ). We also note that the LS estimator is not an LMV unbi-
ased estimator for the case ‖x0‖0 = S; therefore, it is not a
uniformly minimum variance (UMV) estimator [16], [17], [19]
on XS (i.e., an unbiased estimator with minimum variance at
each x0 ∈ XS). In fact, as shown in [14] and [22], there does
not exist a UMV unbiased estimator for the SLGM in general.

B. A New CRB-Type Lower Variance Bound

A new lower bound on MSLGM(c(·), x0) is stated in
the following theorem [33]. This bound follows from the
generic lower bound (27) by using the subspace U =
span

{
u0(·), {ũi (·)}i∈[|K|]

}
, with

u0(·) � RSLGM,x0(·, x0),

(30)

ũi (·) � ∂RSLGM,x0(·, x2)

∂(x2)li

∣
∣
∣
∣
x2=x̃0

, i ∈ [|K|],

where x̃0 ∈ R
N and K = {l1, . . . , l|K|} ⊆ [N] are defined in

the theorem.
Theorem IV.1: Consider the estimation problem ESLGM =(

XS, fH(y; x), g(x) = xk
)

with a system matrix H ∈ R
M×N

satisfying (4). Let x0 ∈ XS, and consider an arbitrary index
set K = {l1, . . . , l|K|} ⊆ [N] consisting of no more than S
indices, i.e., |K| ≤ S. If the prescribed bias function c(·) :
XS → R is such that the partial derivatives ∂c(x)

∂xli

∣
∣
x=x0

exist

5If an LMV estimator exists, then it is unique [19].

for all i ∈ [|K|], then6

MSLGM(c(·), x0) ≥ exp

(

− 1

σ 2 ‖(I−P)Hx0‖2
2

)

×σ 2bT
x0

(
HT
KHK

)−1bx0 . (31)

Here, P � HK(HK)† ∈ R
M×M and bx0 ∈ R

|K| is defined
entrywise as (bx0)i � δk,li + ∂c(x)

∂xli

∣
∣
x=x̃0

for i ∈ [|K|], where

x̃0 ∈ R
N is the unique (due to (4)) vector with supp(x̃0) ⊆ K

solving Hx̃0 = PHx0.
Proof: see Appendix D.
The bound (31) has an intuitively appealing interpretation

in terms of a scaled CRB for an LGM. Indeed, the quantity
σ 2bT

x0

(
HT
KHK

)−1bx0 appearing in (31) can be interpreted
as the CRB [18] for the LGM with parameter dimension
N = |K|, parameter function g(x) = xk , and prescribed
bias function c(·). For a discussion of the scaling factor
exp

(− 1
σ 2 ‖(I−P)Hx0‖2

2

)
, we will consider the following two

complementary cases:

1) Consider the case where k /∈ supp(x0) and ‖x0‖0 = S.
Let us choose K = L ∪ {k}, where L comprises the
indices of the S − 1 largest (in magnitude) entries of
x0. We then obtain ‖(I−P)Hx0‖2

2 = ξ2
0 ‖(I−P)He j0‖2

2,
where ξ0 and j0 denote the value and index, respectively,
of the smallest (in magnitude) nonzero entry of x0.7

Typically,8 ‖(I−P)He j0‖2
2 > 0 and therefore, as ξ0

becomes larger (in magnitude), the bound (31) transi-
tions from a “low signal-to-noise ratio (SNR)” regime,
where exp

(− 1
σ 2 ‖(I−P)Hx0‖2

2

) ≈ 1, to a “high-SNR”
regime, where exp

(− 1
σ 2 ‖(I−P)Hx0‖2

2

) ≈ 0. In the low-
SNR regime, the bound (31) is approximately equal to
σ 2bT

x0

(
HT
KHK

)−1bx0, i.e., to the CRB for the LGM with
N = |K|. In the high-SNR regime, the bound becomes
approximately equal to 0; this suggests that the zero
entries xk with k /∈ supp(x) can be estimated with small
variance. Note that for increasing ξ0, the transition from
the low-SNR regime to the high-SNR regime exhibits
an exponential decay.

2) On the other hand, in the complementary case where
either k ∈ supp(x0) or ‖x0‖0 ≤ S − 1 (or both), the
factor exp

(− 1
σ 2 ‖(I−P)Hx0‖2

2

)
can be made equal to 1

by choosing K = supp(x0) ∪ {k}.
We note that the bound presented in [33] is obtained by

maximizing (31) with respect to the index set K; this gives
the tightest possible bound of the type (31).

The matrix P appearing in (31) is the orthogonal pro-
jection matrix [21] on the subspace HK � span(HK)

6Note that
(
HT
KHK

)−1 exists because of (4).
7Indeed, we have Hx0 = HLx0,L + ξ0He j0 , where HL and x0,L denote,

respectively, the restriction of the matrix H and the vector x0 to the columns
and entries indexed by L. The component HLx0,L belongs to the subspace
span(HL). Because span(HL) ⊆ span(HK), the orthogonal projection
matrix I − P suppresses any vector component belonging to span(HL). It
then follows that

(I−P)Hx0 = (I−P)(HLx0,L + ξ0He j0) = ξ0(I−P)He j0 .

8Note that, for the case k /∈ supp(x0) and ‖x0‖0 = S considered,
j0 /∈ K with |K| = S. For a system matrix H satisfying (4), we then have
‖(I−P)He j0‖2

2 > 0 if and only if the submatrix HK∪{ j0} has full column rank.
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⊆ R
M, i.e., the subspace spanned by those columns of H

whose indices are in K. Consequently, I−P is the orthogonal
projection matrix on the orthogonal complement of HK, and
the norm ‖(I−P)Hx0‖2 thus represents the distance between
the point Hx0 and the subspace HK [31]. Therefore, the factor
exp

(− 1
σ 2 ‖(I−P)Hx0‖2

2

)
appearing in the bound (31) can be

interpreted as a measure of the distance between Hx0 and HK.
In general, the bound (31) is tighter (i.e., higher) if K is chosen
such that the distance ‖(I−P)Hx0‖2 is smaller.

For the special case given by the SSNM, i.e., H = I,
and unbiased estimation, i.e., c(·) ≡ 0, the bound (31) is
a continuous function of x0 on XS . This is an important
difference from the bound in (28) and, also, from the bound
to be given in (50) below. Furthermore, still for H = I and
c(·) ≡ 0, the bound (31) can be shown [33], [22, p. 106] to
be tighter (higher) than the bounds given by (28) and (50).

C. The SLGM View of Compressed Sensing

The lower bounds for the SLGM presented in
Sections IV-A and IV-B are also relevant to the linear
CS recovery problem, which can be viewed as an instance of
the SLGM estimation problem. In this section, we express the
new lower bound in Theorem IV.1 in terms of the restricted
isometry constant of the system matrix (CS measurement
matrix) H.

The compressive measurement process within a CS problem
is often modeled as [2], [7], [8], [23], [34], [35]

y = Hx + n. (32)

Here, y ∈ R
M denotes the compressive measurements; H ∈

R
M×N , where M ≤ N and typically M � N , denotes the

CS measurement matrix; x ∈ XS ⊆ R
N is an unknown

S-sparse signal or parameter vector, with known sparsity
degree S (typically S � N); and n represents additive
measurement noise. We assume that n ∼ N (0, σ 2I) and that
the columns {h j } j∈[N] of H are normalized, i.e., ‖h j ‖2 = 1 for
all j ∈ [N]. The CS measurement model (32) is then identical
to the SLGM observation model (2). Any CS recovery method,
such as basis pursuit (BP) [34], [36] or orthogonal matching
pursuit (OMP) [23], [37], can be interpreted as an estimator
x̂(y) that estimates the sparse vector x from the observation y.

Due to the typically large dimension of the measurement
matrix H, a complete characterization of the properties of
H (e.g., via its SVD) is often infeasible. Useful incomplete
characterizations are provided by the (mutual) coherence
and the restricted isometry property [7], [23], [34], [35].
A matrix H ∈ R

M×N is said to satisfy the restricted isometry
property (RIP) of order K if there is a constant δ′K ∈ R+ such
that for every index set I ⊆ [N] of size |I| = K ,

(1 − δ′K )‖z‖2
2 ≤ ‖HIz‖2

2 ≤ (1 + δ′K )‖z‖2
2, for all z ∈ R

K .

(33)

The smallest δ′K for which (33) holds—hereafter denoted
δK —is called the RIP constant of H. Condition (4) is nec-
essary for a matrix H to satisfy the RIP of order S with a RIP

constant δS < 1.9 It can be easily verified that δK ′ ≥ δK for
K ′ ≥ K .

We now specialize the bound (31) on the minimum achiev-
able variance for ESLGM to the CS scenario, i.e., to the SLGM
with sparsity degree S and a system matrix H that is a
CS measurement matrix (i.e., M ≤ N) with known RIP
constant δS < 1. Note that δS < 1 implies that condition (4) is
satisfied. The following result was presented in [22, Th. 5.7.2].

Corollary IV.2: Consider the SLGM estimation problem
ESLGM = (

XS, fH(y; x), g(x)= xk
)
, where H ∈ R

M×N with
M ≤ N satisfies the RIP of order S with RIP constant δS < 1.
Let x0 ∈ XS, and consider an arbitrary index set K ⊆ [N]
consisting of no more than S indices, i.e., |K| ≤ S. If the
first-order partial derivatives ∂c(x)

∂xl

∣
∣
x=x0

of the prescribed bias
function c(·) : XS → R exist for all l ∈ K, then

MSLGM(c(·), x0) ≥ exp

(

− 1+ δS

σ 2

∥
∥xsupp(x0)\K

0

∥
∥2

2

)
σ 2‖bx0‖2

2

1+ δS
,

(34)

with bx0 ∈ R
|K| as defined in Theorem IV.1.

Proof: see Appendix E.
For a comparison of the actual variance behavior of a given

CS recovery scheme (or, estimator) x̂k(·) with the variance
bound (34), we set c(·) in (34) equal to the estimator’s bias
function, i.e., c(x) = Ex{x̂k(y)} − xk . We note that the first-
order partial derivatives of c(x), which occur in Corollary IV.2,
are given by [32, Corollary 2.6]

∂c(x)
∂xl

= δk,l + 1

σ 2 Ex
{
x̂k(y)(y − Hx)T Hel

}
. (35)

For a “good” CS measurement matrix—i.e., a matrix with
small δS—the bound (34) is very close to a bound for the
SSNM (i.e., for H = I) that will be presented in Section V-C
(see (49) below). This means that, conversely, in terms of a
lower bound on the achievable variance, relative to the SSNM
(case H = I), no loss of information is incurred by multiplying
x by the CS measurement matrix H ∈ R

M×N and thereby
reducing the signal dimension from N to M , where typically
M � N . This agrees with the fact that for small δS , one
can recover—e.g., by using BP—the sparse parameter vector
x ∈ XS from the compressed observation y = Hx+n up to an
error that is typically very small (and whose norm is almost
independent of H and solely determined by the measurement
noise n [7], [38]).

V. RKHS-BASED ANALYSIS OF MINIMUM VARIANCE

ESTIMATION FOR THE SSNM

Next, we specialize our RKHS-based MVE analysis to the
SSNM, i.e., to the case given by H = I (which implies
M = N and y = x + n). We note that the SLGM with a
system matrix H ∈ R

M×N having orthonormal columns, i.e.,
satisfying HT H = I, is equivalent to the SSNM [14].

9Indeed, assume that spark(H) ≤ S. This means that there exists an index
set I ⊆ [N ] consisting of S indices such that the columns of HI are linearly
dependent. This, in turn, implies that there is a nonzero coefficient vector
z ∈ R

S such that HI z = 0 and consequently ‖HI z‖2
2 = 0. Therefore, there

cannot exist a constant δ′K < 1 for which (33) holds.
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Specializing the kernel RSLGM,x0(·, ·) (see (18)) to H = I,
we obtain

RSSNM,x0(x1, x2)

= exp

(
1

σ 2 (x2 − x0)
T (x1 − x0)

)

, x0, x1, x2 ∈ XS . (36)

The corresponding RKHS, H(RSSNM,x0), will be briefly
denoted by HSSNM,x0 .

A. Valid Bias Functions, Minimum Achievable Variance,
and LMV Estimator

Since the SSNM is a special case of the SLGM, we
can characterize the class of valid bias functions, the
Barankin bound, and the corresponding LMV estimator by
Corollary III.2 and Corollary III.3 with H = I. However,
a more convenient characterization [22, Th. 5.5.2] can be
obtained by exploiting the specific structure of HSSNM,x0 that
is induced by the choice H = I.

Theorem V.1: Consider the SSNM estimation problem
ESSNM = (

XS, fI(y; x), g(·)).
1) A prescribed bias function c(·) : XS → R is valid for

ESSNM at x0 ∈XS if and only if the corresponding mean
function γ (·) = c(·)+ g(·) can be expressed as

γ (x) = νx0(x)
∑

p∈Z
N+∩XS

a[p]
√

p!
(

x
σ

)p

, x ∈ XS, (37)

with

νx0(x) � exp

(
1

2σ 2 ‖x0‖2
2 − 1

σ 2 xT x0

)

(38)

and with a coefficient sequence a[p] ∈ �2(ZN+ ∩ XS).
This coefficient sequence is unique for a given c(·).

2) Let the prescribed bias function c(·) : XS → R be valid
for ESSNM at x0 ∈XS . Then:

a) The minimum achievable variance at x0 ∈ XS is
given by

MSSNM(c(·), x0) =
∑

p∈Z
N+∩XS

a2
x0

[p] − γ 2(x0), (39)

with

ax0[p] � 1
√

p!
∂p
(
γ (σx)/νx0(σx)

)

∂xp

∣
∣
∣
∣
x=0

. (40)

b) The LMV estimator at x0 is given by

ĝ(c(·),x0)(y) =
∑

p∈Z
N+∩XS

ax0[p]
√

p!
∂pψx0(x, y)

∂xp

∣
∣
∣
∣
x=0

,

(41)

with

ψx0(x, y) � exp

(
yT (σx−x0)

σ 2 + xT
0 x
σ

− ‖x‖2
2

2

)

.

(42)
Proof: see Appendix F.
Note that the statement of Theorem V.1 is stronger than

that of Corollary III.3, because it contains explicit expressions

of the minimum achievable variance MSSNM(c(·), x0) and the
corresponding LMV estimator ĝ(c(·),x0)(y).

The expression (39) nicely shows the influence of the spar-
sity constraints on the minimum achievable variance. Indeed,
consider a bias function c(·) : R

N → R that is valid for
the SSNM with S = N , and therefore also for the SSNM
with S < N . Let us denote by MN and MS the minimum
achievable variance M(c(·), x0) for the degenerate SSNM
without sparsity (S = N) and for the SSNM with sparsity
(S < N), respectively. Note that in the nonsparse case S = N ,
the SSNM coincides with the LGM with H = I. It then follows
from (39) that MN = ∑

p∈Z
N+ a2

x0
[p] − γ 2(x0) and

MN − MS =
∑

p∈Z
N+\XS

a2
x0

[p].

Clearly, if x is more sparse, i.e., if the sparsity degree S is
smaller, the number of (nonnegative) terms in the above sum
is larger. This implies a larger difference MN − MS and, thus,
a stronger reduction of the minimum achievable variance due
to the sparsity information.

We mention the obvious fact that a UMV estimator for
ESSNM = (

XS, fI(y; x), g(·)) and bias function c(·) exists if
and only if the LMV estimator ĝ(c(·),x0)(·) given by (41) does
not depend on x0.

Consider the SSNM with parameter function g(x) = xk , i.e.,
ESSNM = (

XS, fI(y; x), g(x)= xk
)
, for some k ∈ [N]. Because

the specific estimator ĝ(y) = yk has finite variance and zero
bias at each x ∈ XS , the bias function cu(x) ≡ 0 must be
valid for ESSNM at each x0 ∈ XS . Therefore, according to
Corollary III.4, the minimum achievable variance for unbi-
ased estimation within the SSNM with parameter function
g(x) = xk , MSSNM(cu(·), x0), is a lower semi-continuous func-
tion of x0 on its domain, i.e., on XS . (Note that this remark
is not related to Theorem V.1.)

Finally, we note that the explicit expression (41) for
the LMV estimator is mainly of theoretical interest, since
it depends on the unknown parameter x0 and therefore
cannot be implemented in practice. However, this expres-
sion might give some intuition on how to design practical
estimators whose performance comes close to that of the
LMV estimator.

B. Diagonal Bias Functions

In this subsection, we consider the SSNM estimation prob-
lem10 ESSNM = (

XS, fI(y; x), g(x)= xk
)
, for some k ∈ [N],

and study a specific class of bias functions. Let us call a bias
function c(·) : XS → R diagonal if c(x) depends only on
the kth entry of the parameter vector x, i.e., the specific scalar
parameter xk to be estimated. That is, c(x) = c̃(xk), with some
function c̃(·) : R → R that may depend on k. Similarly, we
say that an estimator x̂k(y) is diagonal if it depends only on
the kth entry of y, i.e., x̂k(y) = x̂k(yk) (with an abuse of
notation). Clearly, the bias function b(x̂k(·); x) of a diagonal

10We recall that the assumption g(x) = xk is no restriction, because the
MVP for any given parameter function g(·) is equivalent to the MVP for
the parameter function g′(x) = xk and the modified prescribed bias function
c′(x) = c(x) + g(x)− xk .
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estimator x̂k(·) is diagonal, i.e., b(x̂k(·); x) = b(x̂k(·); xk).
Well-known examples of diagonal estimators are the hard- and
soft-thresholding estimators described in [2], [11], and [39]
and the LS estimator, x̂LS,k(y) = yk . The maximum likelihood
estimator for the SSNM is not diagonal, and neither is its bias
function [14].

The following theorem [22, Th. 5.5.4], which can be
regarded as a specialization of Theorem V.1 to the case of
diagonal bias functions, provides a characterization of the class
of valid diagonal bias functions, as well as of the minimum
achievable variance and LMV estimator for a prescribed
diagonal bias function. In the theorem, we will use the lth
order (probabilists’) Hermite polynomial Hl(·) : R → R

defined as [40]

Hl(x) � (−1)l ex2/2 dl

dxl
e−x2/2.

Furthermore, in the case ‖x0‖0 = S, the support of x0 will be
denoted as supp(x0) = {k1, . . . , kS}.

Theorem V.2: Consider the SSNM estimation problem
ESSNM = (

XS, fI(y; x), g(x) = xk
)
, k ∈ [N], at x0 ∈ XS.

Furthermore consider a bias function c(·) : XS → R that
is diagonal and such that the corresponding mean function
γ (x) = c(x)+ xk can be written as a convergent power series
centered at x0, i.e.,

γ (x) =
∑

l∈Z+

ml

l! (xk − x0,k)
l , (43)

with suitable coefficients ml . (Note, in particular, that m0 =
γ (x0).) In what follows, let

Bc �
∑

l∈Z+

m2
l σ

2l

l! .

1) The bias function c(·) is valid at x0 if and only if
Bc < ∞.

2) Assume that Bc <∞, i.e., c(·) is valid. Then:

a) The minimum achievable variance at x0 is

MSSNM(c(·), x0) = Bc φ(x0) − γ 2(x0),

with

φ(x0) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if | supp(x0) ∪ {k}| ≤ S
∑

i∈[S]
exp

(

− x2
0,ki

σ 2

)

×
∏

j∈[i−1]

[

1 − exp

(

−
x2

0,k j

σ 2

)]

< 1,

if | supp(x0) ∪ {k}| = S + 1.

(44)

(Recall that supp(x0) = {ki}S
i=1 in the case

| supp(x0) ∪ {k}| = S + 1.)
b) The LMV estimator at x0 is

x̂ (c(·),x0)
k (y) = ψ(y, x0)

∑

l∈Z+

mlσ
l

l! Hl

(
yk − x0,k

σ

)

,

with

ψ(y, x0) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if | supp(x0) ∪ {k}| ≤ S
∑

i∈[S]
exp

(

− x2
0,ki

+ 2yki x0,ki

2σ 2

)

×
∏

j∈[i−1]

[

1−exp

(

−
x2

0,k j
+ 2yk j x0,k j

2σ 2

)]

,

if | supp(x0) ∪ {k}| = S + 1.

(45)

3) Finally, assume that the prescribed bias function c(·)
is the actual bias function of a diagonal estimator
x̂k(y) = x̂k(yk), i.e., c(x) = b(x̂k(·); x). Then, the
minimum achievable variance is

MSSNM(c(·), x0) = v(x̂k(·); x0)φ(x0)

+ [φ(x0)− 1] γ 2(x0), (46)

and the corresponding LMV estimator is

x̂ (c(·),x0)
k (y) = x̂k(yk) ψ(y, x0). (47)

Proof: The proof is based on applying Theorem V.1 to
a diagonal prescribed bias function such that the corre-
sponding mean function is of the form (43). In particular,
one relates the coefficients ml in (43) with the coefficients
a[p] in the expansion (37). The relations (46) and (47) are
obtained by recognizing that the set

{ 1√
l! Hl

( yk−x0,k
σ

)}
l∈Z+

forms an orthonormal basis for the Hilbert space of diag-
onal estimator functions with finite variance at x0 and
inner product given by 〈ĝ1(yk), ĝ2(yk)〉 = ∫

R
ĝ1(yk) ĝ2(yk)

exp
(− 1

2σ 2 (yk − x0,k)
2
)

dyk [41]. For a detailed proof, we refer
to [22, Appendix A]. �

Regarding the case distinction in Theorem V.2, we note that
| supp(x0)∪{k}| ≤ S either if ‖x‖0 ≤ S−1 or if both ‖x‖0 = S
and k ∈ supp(x0), and | supp(x0)∪{k}| = S+1 if both ‖x‖0 =
S and k �∈ supp(x0).

Remarkably, as shown by (47), the LMV estimator can be
obtained by multiplying the diagonal estimator x̂k(y)—which
is arbitrary except for the condition that its variance at x0 is
finite—by the “correction factor” ψ(y, x0) in (45). It can be
easily verified that ψ(y, x0) does not depend on yk . According
to (45), the following two cases have to be distinguished:

1) For k ∈ [N] such that | supp(x0) ∪ {k}| ≤ S, we have
ψ(y, x0) = 1, and therefore the LMV estimator is
obtained from (47) as x̂ (c(·),x0)

k (y) = x̂k(yk) = x̂k(y).
Thus, in that case, it follows that every diagonal esti-
mator x̂k(·) : R

N → R for the SSNM that has finite
variance at x0 is necessarily an LMV estimator. In par-
ticular, the variance v(x̂k(·); x0) equals the minimum
achievable variance MSSNM(c(·), x0), i.e., the Barankin
bound. Furthermore, the sparsity information cannot be
leveraged for improved MVE, because the estimator
x̂k(·) is an LMV estimator for the parameter set XS with
arbitrary S, including the nonsparse case X = R

N .
2) For k ∈ [N] such that | supp(x0) ∪ {k}| = S + 1, it

follows from (46) and (44) that there exist estimators
(in particular, the LMV estimator x̂ (c(·),x0)

k (y)) with the
same bias function as x̂k(·) but with a smaller variance
at x0. Indeed, in this case, we have φ(x0) < 1 in (44),
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and by (46) it thus follows that MSSNM(c(·), x0) <
v(x̂k(·); x0).

Let us for the moment make the (mild) assumption that
the given diagonal estimator x̂k(·) has finite variance at every
parameter vector x ∈ R

N . It can then be shown that the
LMV estimator x̂ (c(·),x0)

k (·) is robust to deviations from the
nominal parameter x0 in the sense that its bias and variance
depend continuously on x0. Furthermore, x̂ (c(·),x0)

k (·) has finite
bias and finite variance at every parameter vector x ∈ R

N ,
i.e.,

∣
∣b
(
x̂ (c(·),x0)

k (·); x
)∣
∣ < ∞ and v

(
x̂ (c(·),x0)

k (·); x
)
< ∞ for

all x ∈ R
N .

We finally note that (46) and (47) also apply to unbiased
estimation, i.e., prescribed bias function c(·) ≡ 0 (equivalently,
γ (x) = xk). This is because c(·) ≡ 0 is the actual bias function
of the LS estimator x̂LS,k(y) = yk . Clearly, the LS estimator
is diagonal and has finite variance at x0. Thus, it can be used
as the given diagonal estimator x̂k(y) in (46) and (47).

C. Lower Variance Bounds

Finally, we complement the exact expressions of the min-
imum achievable variance MSSNM(c(·), x0) presented above
by simple lower bounds. The following bound is obtained by
specializing the sparse CRB in (28) to the SSNM
(H = I). Consider the estimation problem ESSNM =(
XS, fI(y; x), g(x)= xk

)
, and let x0 ∈ XS . If the bias function

c(·) : XS → R is such that the partial derivatives ∂c(x)
∂xl

∣
∣
x=x0

exist for all l ∈ [N], then

MSSNM(c(·), x0) ≥
{
σ 2‖b‖2

2, if ‖x0‖0 ≤ S−1

σ 2‖bx0‖2
2, if ‖x0‖0 = S.

(48)

Here, in the case ‖x0‖0 ≤ S −1, b ∈ R
N is given by bl �

δk,l + ∂c(x)
∂xl

∣
∣
x=x0

, l ∈ [N], and in the case ‖x0‖0 = S, bx0 ∈ R
S

consists of those entries of b that are indexed by supp(x0) =
{k1, . . . , kS}, i.e., (bx0)i = bki , i ∈ [S].

Next, we specialize the bound in Theorem IV.1 to the
SSNM. To this end, note that because H = I, we have P =
HK(HK)† = IK(IK)† = ∑

l∈K eleT
l . Therefore, multiplying

x0 by I−P simply zeros all entries of x0 whose indices belong
to K, i.e., (I−P)x0 = xsupp(x0)\K

0 .
Corollary V.3: Consider the estimation problem ESSNM =(

XS, fI(y; x), g(x) = xk
)
. Let x0 ∈ XS , and consider an

arbitrary index set K = {l1, . . . , l|K|} ⊆ [N] consisting of
no more than S indices, i.e., |K| ≤ S. If the bias function
c(·) : XS → R is such that the partial derivatives ∂c(x)

∂xli

∣
∣
x=x0

exist for all i ∈ [|K|], then

MSSNM(c(·), x0) ≥ exp

(

− 1

σ 2

∥
∥xsupp(x0)\K

0

∥
∥2

2

)

σ 2‖bx0‖2
2.

(49)

Here, bx0 ∈ R
|K| is defined entrywise as (bx0)i � δk,li +

∂c(x)
∂xli

∣
∣
x=xK0

for i ∈ [|K|].
For unbiased estimation (c(·) ≡ 0), the following lower

bound on MSSNM(c(·)≡ 0, x0) is based on the Hammersley-
Chapman-Robbins bound (HCRB) [19], [29], [42]. This
bound has been previously derived in a slightly different
form in [14]. Consider the estimation problem ESSNM =

(
XS, fI(y; x), g(x)= xk

)
with k ∈ [N] and the bias function

c(·) ≡ 0. Let x0 ∈ XS . Then,

MSSNM(c(·), x0) ≥

⎧
⎪⎪⎨

⎪⎪⎩

σ 2, if | supp(x0) ∪ {k}| ≤ S

σ 2 N − S−1

N − S
exp(−ξ2

0 /σ
2),

if | supp(x0) ∪ {k}| = S + 1,

(50)

where ξ0 denotes the S-largest (in magnitude) entry of x0.
In [22, Th. 5.4.2], it is shown that the bound (50)

for | supp(x0) ∪ {k}| ≤ S is obtained as a limit of the
generic bound (27) for the sequence of subspaces U =
U (t) � span

{
u0(·), {u(t)l (·)}l∈[N]

}
as t → 0. Here, u0(·) �

RSSNM,x0(·, x0) and

u(t)l (·) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RSSNM,x0(·, x0 + tel)− RSSNM,x0(·, x0),

if l ∈ supp(x0)

RSSNM,x0(·, x0 − ξ0e j0 + tel )− RSSNM,x0(·, x0),

if l ∈ [N] \ supp(x0),

for l ∈ [N], where j0 denotes the index of the S-largest
(in magnitude) entry of x0. Similarly, the bound (50) for
| supp(x0) ∪ {k}| = S + 1 is obtained as a limit of
(27) for U = Ũ (t) � span

{
u0(·), u(t)(·)} as t → 0,

where u(t)(·) � RSSNM,x0(·, x0 + tek) − RSSNM,x0(·, x0).
(An expression of RSSNM,x0(·, ·) was given in (36).) In [14], an
equivalent bound on the MSE (equivalently, on the variance,
because c(·) ≡ 0) was formulated for a vector-valued estimator
x̂(·); that bound can be obtained by summing (50) over all
k ∈ [N].

It can be shown that the HCRB-type bound (50) is tighter
(higher) than the CRB (48) specialized to c(·) ≡ 0. For
| supp(x0) ∪ {k}| = S + 1 (which is true if both ‖x‖0 = S
and k �∈ supp(x0)), the HCRB-type bound (50) is a strictly
upper semi-continuous function of x0, just as the CRB (48).
Hence, it again follows from Corollary III.4 that the bound
cannot be tight, i.e., in general, we have a strict inequality
in (50). However, for | supp(x0) ∪ {k}| ≤ S (which is true
either if ‖x‖0 ≤ S−1 or if both ‖x‖0 = S and k ∈ supp(x0)),
the bound (50) is tight since it is achieved by the LS estimator
x̂LS,k(y) = yk .

According to (50), the MSE of any unbiased estimator x̂(y)
for the parameter vector x is larger than or equal to Nσ 2 at all
x with ‖x‖0 ≤ S−1. However, as shown in [43] and [44], there
exist biased estimators for the SSNM whose MSE is on the
order of Sσ 2 log(N), which can be significantly smaller than
the corresponding bound for unbiased estimators. This implies
that, in general, unbiased estimators are not well suited for the
estimation of sparse vectors. One possible use of the lower
bounds presented in this paper is as a tool for finding bias
functions that allow for a small variance and, in turn, a small
MSE for all sparse parameter vectors x ∈ XS .

VI. NUMERICAL RESULTS

In this section, we compare the lower variance bounds
presented in Sections IV and V with the actual vari-
ance behavior of some well-known estimators. We consider
the SLGM estimation problem ESLGM = (

XS, fH(y; x),
g(x) = xk

)
for k ∈ [N]. In what follows, we will
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denote the lower bounds (28) and (31) by B(1)k (c(·), x0) and
B(2)k (c(·), x0), respectively. We recall that the latter bound
depends on an index set K ⊆ [N] with |K| ≤ S, which can be
chosen freely.

Let x̂(·) be an estimator of x with bias function c(·). Because
of (8), a lower bound on the estimator variance v(x̂(·); x0)
can be obtained by summing with respect to k ∈ [N]
the “scalar bounds” B(1)k (ck(·), x0) or B(2)k (ck(·), x0), where
ck(·) �

(
c(·))k , i.e.,

v(x̂(·); x0) ≥ B(1/2)(c(·), x0) �
∑

k∈[N]
B(1/2)k (ck(·), x0). (51)

Here, the index sets Kk used in B(2)k (ck(·), x0) can be chosen
differently for different k.

A. An SLGM View of Fourier Analysis

Our first example is inspired by [18, Example 4.2].
We consider the SLGM with N even, i.e., N = 2L, and
σ 2 = 1. The system matrix H ∈ R

M×2L is given by
Hm,l = cos

(
θl(m − 1)

)
for m ∈ [M] and l ∈ [L] and

Hm,l = sin
(
θl(m−1)

)
for m ∈ [M] and l ∈ {L + 1, . . . , 2L}.

Here, the normalized angular frequencies θl are uniformly
spaced according to θl = θ0 + [

(l −1) mod L
]
�θ , l ∈ [N].

The multiplication of x by H then corresponds to an inverse
discrete Fourier transform that maps 2L spectral samples (the
entries of x) to M temporal samples (the entries of Hx). In our
simulation, we chose M = 128, L = 8 (hence, N = 16),
S = 4, θ0 = 0.2, and �θ = 3.9 · 10−3. The frequency spacing
�θ is about half the nominal DFT frequency resolution, which
is 1/128 ≈ 7.8 · 10−3.

We consider the OMP estimator x̂OMP(·) that is obtained
by applying the OMP [23], [37] with S = 4 iterations to
the observation y. We used Monte Carlo simulation with
randomly generated noise n ∼ N (0, I) to estimate the vari-
ance v(x̂OMP(·); x0) of x̂OMP(·). The parameter vector was
chosen as x0 = √

SNR x̃0, where x̃0 ∈ {0, 1}16, supp(x̃0) =
{3, 6, 11, 14}, and SNR varies between 10−2 and 104. Thus,
the observation y = Hx0 + n is a noisy superposition of
four sinusoidal components with identical amplitudes; two of
them are cosine and sine components with frequency θ3 =
θ11 = θ0 + 2�θ , and two are cosine and sine components
with frequency θ6 = θ14 = θ0 + 5�θ . In Fig. 1, we plot
v(x̂OMP(·); x0) versus SNR. For comparison, we also plot the
lower bounds B(1)(cOMP(·), x0) and B(2)(cOMP(·), x0) in (51),
with cOMP(x) � b(x̂OMP(·); x) being the actual bias function
of the OMP estimator x̂OMP(·). To evaluate these bounds,
we computed the first-order partial derivatives of the bias
functions cOMP,k(x) (see (28) and Theorem IV.1) by means of
(35) using the Monte Carlo method outlined in [28, Sec. 3].
The index sets Kk in the bound B(2)(cOMP(·), x0) were chosen
as Kk = supp(x0) for k ∈ supp(x0) and Kk = {k} for
k /∈ supp(x0). This is the simplest nontrivial choice of the
Kk for which B(2)(cOMP(·), x0) is tighter than the state-
of-the-art bound B(1)(cOMP(·), x0) (the sparse CRB, which
was originally presented in [12]). Finally, Fig. 1 also shows
the “oracle CRB,” which is defined as the CRB for known
supp(x0). This is simply the CRB for a linear Gaussian model

Fig. 1. Variance of the OMP estimator and corresponding lower bounds
versus SNR, for the SLGM with N = 16, M = 128, S = 4, and σ2 = 1.

with system matrix Hsupp(x0) and is thus given by
tr
((

HT
supp(x0)

Hsupp(x0)

)−1) ≈ 4.19 [18] for all values of SNR
(recall that we set σ 2 = 1).

As can be seen in Fig. 1, for SNR below 20 dB,
v(x̂OMP(·); x0) is significantly higher than the three lower
bounds. This suggests that there might exist estimators with the
same bias as that of the OMP estimator but a smaller variance;
however, a positive statement regarding the existence of such
estimators cannot be based on our analysis. In particular,
our analysis does not rule out the possibility that the OMP
estimator already achieves the minimum achievable variance.
For SNR larger than about 15 dB, the three lower bounds
coincide. Furthermore, for SNR larger than about 12 dB,
v(x̂OMP(·); x0) quickly converges toward the lower bounds.
This is because for high SNR, the OMP estimator is able to
correctly detect supp(x0) with very high probability.

B. Minimum Variance Analysis for the SSNM

Next, we consider the maximum likelihood (ML) esti-
mator, an estimator based on the approximate message
passing (AMP) algorithm, and the hard-thresholding (HT)
estimator for the SSNM, i.e., for M = N and H = I, with
N = 50, S = 5, and σ 2 = 1. The ML estimator is given by

x̂ML(y) � argmax
x′∈XS

f (y; x′) = PS(y),

where the operator PS retains the S largest (in magnitude)
entries and zeros all other entries. Closed-form expressions
of the mean and variance of the ML estimator were derived
in [14]. For the AMP estimator x̂AMP(·), we used the imple-
mentation [45, Algorithm 1] with the choice λ = 2.5. The
HT estimator x̂HT(·) is given by

x̂HT,k(y) = x̂HT,k(yk) =
{

yk, |yk| ≥ T

0, else,
k ∈ [N], (52)

where T is a fixed threshold. Note that in the limiting case
T = 0, the HT estimator coincides with the LS estimator
x̂LS(y) = y. The mean and variance of the HT estimator are
given by

Ex
{

x̂HT,k(y)
}

= 1√
2πσ 2

∫

R\[−T ,T ]
y exp

(

− 1

2σ 2 (y − xk)
2
)

dy (53)
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Fig. 2. Variance of the ML, AMP, and HT estimators and corresponding lower bounds versus SNR, for the SSNM with N = 50, S = 5, and σ2 = 1.

v(x̂HT,k(·); x)

= 1√
2πσ 2

∫

R\[−T ,T ]
y2 exp

(

− 1

2σ 2 (y − xk)
2
)

dy

−(
Ex

{
x̂HT,k(y)

})2
. (54)

We calculated the variances v(x̂ML(·); x0), v(x̂AMP(·); x0),
and v(x̂HT(·); x0) at parameter vectors x0 = √

SNR x̃0, where
x̃0 ∈ {0, 1}50, supp(x̃0) = [S] = [5], and SNR varies between
10−2 and 102. (The fixed choice supp(x0) = [S] is justified by
the fact that neither the variances of the ML, AMP, and HT
estimators nor the corresponding variance bounds depend on
the location of supp(x0).) In particular, v(x̂HT(·); x0) was cal-
culated by numerical evaluation of the integrals (53) and (54).
The variance v(x̂AMP(·); x0) of the AMP estimator was
estimated through Monte Carlo simulation. Fig. 2 shows
v(x̂ML(·); x0), v(x̂AMP(·); x0), and v(x̂HT(·); x0)—the last for
four different choices of T in (52)—versus SNR. Also shown
are the lower bounds B(2)(cML(·), x0), B(2)(cAMP(·), x0), and
B(2)(cHT(·), x0) (cf. (51)), with cML(·), cAMP(·), and cHT(·)
being the actual bias functions of x̂ML(·), x̂AMP(·), and x̂HT(·),
respectively. The index sets underlying the bounds were
chosen as Kk = supp(x0) for k ∈ supp(x0) and Kk =
{k} ∪ {supp(x0)\{ jS}} for k /∈ supp(x0), where jS denotes the
index of the S-largest (in magnitude) entry of x0. The first-
order partial derivatives of the bias functions cML,k(x) involved
in the bound B(2)(cML(·), x0) were approximated by a finite-
difference quotient [28], i.e., ∂cML,k (x)

∂xl
= δk,l + ∂Ex{x̂ML,k (y)}

∂xl
with

∂Ex
{
x̂ML,k(y)

}

∂xl
≈ Ex+�el

{
x̂ML,k(y)

}− Ex
{
x̂ML,k(y)

}

�
,

where � > 0 is a small stepsize and the expectations were
calculated using the closed-form expressions presented in
[14, Appendix I]. The first-order partial derivatives of the bias
functions cAMP,k(x) involved in the bound B(2)(cAMP(·), x0)
were calculated by means of (35) using the Monte Carlo
method outlined in [28, Sec. 3]. The first-order partial deriv-
atives of the bias functions cHT,k(x) involved in the bound
B(2)(cHT(·), x0) were calculated by means of (35) using
numerical integration.

It can be seen in Fig. 2 that for SNR larger than about
15 dB, the variances of the ML, AMP, and HT estimators and
the corresponding bounds are effectively equal (for the HT
estimator, this is true if T is not too small). Also, all bounds
are close to Sσ 2 = 5; this equals the variance of an oracle esti-
mator that knows supp(x0) and is given by x̂k(y) = yk for k ∈
supp(x0) and x̂k(y) = 0 otherwise. However, in the medium-
SNR range, the variances of the ML and HT estimators are
significantly higher than the corresponding lower bounds. It is
also seen that the AMP estimator has a smaller variance than
the ML and HT estimators on the entire displayed SNR range.
Moreover, comparing with the corresponding lower bound, we
conclude that the AMP estimator nearly yields the minimum
variance among all estimators whose bias equals that of the
AMP estimator.

The fact that, in the medium-SNR range, the variances of
the ML and HT estimators are higher than the corresponding
lower bounds suggests that there might exist estimators with
the same bias as that of the ML or HT estimator but a
smaller variance. However, in general, a positive statement
regarding the existence of such estimators cannot be based
on our analysis. On the other hand, for the special case of
diagonal estimators such as the HT estimator, Theorem V.2
makes a positive statement about the existence of estimators
that have locally a smaller variance than the HT estimator.
In particular, we can use (47) and (46) to obtain the LMV
estimator and corresponding minimum achievable variance at
a parameter vector x0 ∈ XS for the given bias function of
the HT estimator, cHT(·). In Fig. 3, we plot the variance
v(x̂HT(·); x0) for four different choices of T versus SNR.
We also plot the corresponding minimum achievable variance
(Barankin bound) MHT(x0) �

∑
k∈[N] MSSNM(cHT,k(·), x0),

where MSSNM(cHT,k(·), x0) is obtained from (46). (Note that
(46) is applicable because the estimator x̂HT,k(y) is diagonal
and has finite variance at all x0 ∈ XS .) It is seen that for
small T (including T =0, where the HT estimator reduces to
the LS estimator) and for SNR above 0 dB, v(x̂HT(·); x0)
is significantly higher than MHT(x0). As T increases,
the gap between the v(x̂HT(·); x0) and MHT(x0) curves
becomes smaller; in particular, the two curves are almost
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Fig. 3. Variance of the HT estimator for different T and corresponding minimum achievable variance (Barankin bound) versus SNR, for the SSNM with
N =50, S =5, and σ 2 =1.

indistinguishable already for T = 4. For high SNR, MHT(x0)
approaches the oracle variance Sσ 2 = 5 for any value of
T . However, note that, in contrast to the HT estimator, the
LMV estimator achieving MHT(x0) cannot be implemented in
practice since it depends on the unknown parameter vector x0.

VII. CONCLUSION

We used RKHS theory to analyze the minimum variance
estimation (MVE) problem within the sparse linear Gaussian
model (SLGM). In this model, the unknown parameter vector
to be estimated is assumed to be sparse with a known sparsity
degree, and the observed vector is a linearly transformed
version of the parameter vector that is corrupted by i.i.d.
Gaussian noise with known variance. The RKHS framework
allowed us to establish a geometric interpretation of existing
lower bounds on the estimator variance and to derive new
lower bounds on the estimator variance, in both cases under a
bias constraint. These bounds were obtained by an orthogonal
projection of the prescribed mean function onto a subspace
of the RKHS associated with the SLGM. Viewed as functions
of the SNR, the bounds were observed to vary between two
extreme regimes. In the low-SNR regime, the nonzero entries
of the true parameter vector are small compared with the noise
variance. Here, our bounds predict that if the estimator bias
is approximately zero, then the a priori sparsity information
does not help much in the estimation; however, if the bias is
allowed to be nonzero, the estimator variance can be reduced
by the sparsity information. On the other hand, in the high-
SNR regime, where the nonzero entries of the true parameter
vector are large compared with the noise variance, our bounds
coincide with the Cramér–Rao bound of an associated con-
ventional linear Gaussian model in which the support of the
unknown parameter vector is known. Our bounds exhibit a
steep transition between these two regimes. In general, this
transition has an exponential decay with respect to the SNR.

For the special case of the SLGM that corresponds to the
recovery problem in a linear compressed sensing scheme,

we expressed our lower bounds in terms of the restricted
isometry constant of the measurement matrix. Furthermore,
for the special case of the SLGM given by the sparse
signal in noise model (SSNM), we derived closed-form
expressions of the minimum achievable variance (Barankin
bound) and the corresponding LMV estimator. These latter
results include closed-form expressions of the (unbiased)
Barankin bound and the (unbiased) LMV estimator for the
SSNM. Simplified expressions of the Barankin bound and the
LMV estimator were presented for the subclass of “diagonal”
bias functions.

The comparison of our bounds with the actual variance of
established estimators for the SLGM and SSNM (maximum
likelihood estimator, hard thresholding estimator, orthogonal
matching pursuit, and AMP estimator) showed that there might
exist estimators with the same bias but a smaller variance.

An interesting direction for future investigations is the
search for (classes of) estimators that have a prescribed
bias function and asymptotically approach our lower vari-
ance bounds when the estimation is based on an increas-
ing number of i.i.d. observation vectors yi . While [46]
presents an estimator for the SLGM whose MSE attains
the sparse CRB (28) asymptotically, the estimator bias is
not constrained in our sense. For the popular class of
M-estimators or penalized maximum likelihood estimators,
a characterization of the asymptotic behavior is available
[30], [47], [48]. Under mild conditions, M-estimators allow
an efficient implementation via convex optimization tech-
niques. Furthermore, it would be interesting to characterize,
using our variance bounds, the prescribed bias functions
that allow for estimators having a nearly optimum minimax
risk.

Finally, it may be worthwhile to generalize our results to
the case of block or group sparsity [49]–[51]. This could
be useful, e.g., for sparse channel estimation in the case of
clustered scatterers and delay-Doppler leakage [52] and for
the estimation of structured sparse spectra (extending sparsity-
exploiting spectral estimation as proposed in [53]–[57]).
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APPENDIX A
PROOF OF THEOREM III.1

The relations (19) and (21) follow directly from [15, p. 351]
since the kernel of the RKHS HSLGM,x0 is the restriction of
the kernel of the RKHS HLGM,x0 to the subdomain XS ×XS ⊆
R

N × R
N (cf. (18) and (17)). To show (20) and (22), we will

characterize the RKHS HLGM,x0 by using a congruence with
another RKHS.

Lemma A.1: The RKHS HLGM,x0 is isometric to the RKHS
H(RG) whose kernel RG(·, ·) : R

D× R
D → R is given by

RG(z1, z2) = exp
(
zT

1 z2
)
, z1, z2 ∈ R

D. (55)

A congruence from H(RG) to HLGM,x0 is constituted by the
mapping KG[·] : H(RG) → HLGM,x0 given by

KG[ f (·)] = f̃ (x)

� f

(
1

σ
H̃†x

)

exp

(
1

2σ 2 ‖Hx0‖2
2 − 1

σ 2 xT HT Hx0

)

,

x ∈ R
N , (56)

for all f (·) ∈ H(RG), and a congruence from HLGM,x0

to H(RG) is constituted by the inverse mapping K−1
G [·] :

HLGM,x0 → H(RG) given by

K−1
G [ f̃ (·)] = f (z)

� f̃
(
σ H̃z

)
exp

(

− 1

2σ 2 ‖Hx0‖2
2 + 1

σ
zT H̃†x0

)

,

z ∈ R
D,

for all f̃ (·) ∈ HLGM,x0 .
Proof: Consider the two sets

A �
{

f̃x(·) � exp

(
1

2σ 2 ‖Hx0‖2
2 − 1

σ
xT HT Hx0

)

×RG
(·, H̃†x

)
}

x∈RN

and

B �
{

fx(·) � RLGM,x0(·, σx)
}

x∈RN .

As shown in [22, p. 86], the sets A and B span the RKHS
HLGM,x0 and H(RG), respectively. Furthermore, KG is a
continuous linear mapping that maps fx(·) ∈ H(RG) to
f̃x(·) ∈ HLGM,x0 for any x ∈ R

N , and there is 〈 f̃x1(·),
f̃x2(·)〉HLGM,x0

= 〈 fx1(·), fx2(·)〉H(RG)
for any x1, x2 ∈ R

N .
Hence, according to [16, p. 263], KG is a congruence
from H(RG) to HLGM,x0 . For a detailed proof we refer to
[22, Th. 5.2.2]. �

The congruence KG reduces the characterization of the
RKHS HLGM,x0 to that of the RKHS H(RG). A simple
characterization of H(RG) in terms of an orthonormal basis
can be obtained by noting that the kernel RG(·, ·) is infinitely
often differentiable and applying the results for RKHSs with
differentiable kernels presented in [58]. In particular, one can
show [58], [22, Th. 5.2.4] that for any p ∈ Z

D+ , the RKHS
H(RG) contains the function r (p)(·) : R

D → R given by

r (p)(z) � 1
√

p!
∂p RG(z, z2)

∂zp
2

∣
∣
∣
∣
z2=0

= 1
√

p! zp .

Furthermore, the set of functions
{
r (p)(·)}p∈Z

D+
is an ortho-

normal basis for H(RG), and the inner product of an arbitrary
function f (·) ∈ H(RG) with r (p)(·) is given by

〈
f (·), r (p)(·)〉H(RG)

= 1
√

p!
∂p f (z)
∂zp

∣
∣
∣
∣
z=0
. (57)

It follows that a function f (·) : R
D → R belongs to H(RG) if

and only if it can be written pointwise as

f (z) = fa(z) �
∑

p ∈Z
D+

a[p] r (p)(z) =
∑

p∈Z
D+

a[p]
√

p! zp, (58)

with a unique coefficient sequence a[p] ∈ �2(ZD+) that is given
by (57), i.e.,

a[p] = 1
√

p!
∂p f (z)
∂zp

∣
∣
∣
∣
z=0
.

The characterization (20) of the RKHS HLGM,x0 then fol-
lows in a straightforward manner since any function f̃ (·) ∈
HLGM,x0 is the image of some f (·) = fa(·) ∈ H(RG) of the
form (58) under the congruence KG[·] given by (56). Further-
more, since KG[·] is a congruence and the functions

{
r (p)(z) =

1√
p! zp

}
p∈Z

D+
form an orthonormal basis for H(RG), we have

‖ f̃a(·)‖HLGM,x0
= ‖ fa(·)‖H(RG) = ‖a[·]‖�2(ZD+ ),

which is (22).

APPENDIX B
PROOF OF COROLLARY III.3

1) Consider a bias function c(·) : XS → R that is valid for
ESLGM = (

XS, fH(y; x), g(·)) at x0 ∈XS , and let γ (·) = c(·)+
g(·) be the corresponding mean function. By (13) and (21),
the minimum achievable variance MSLGM(c(·), x0) is given by

MSLGM(c(·), x0)
(13)= ‖γ (·)‖2

HSLGM,x0
− γ 2(x0)

(21)= min
f̃ (·)∈HLGM,x0

f̃ (·)
∣
∣
XS

=γ (·)

‖ f̃ (·)‖2
HLGM,x0

− γ 2(x0). (59)

We now use the parametrization of f̃ (·) in terms of the
coefficient sequence a[·] ∈ �2(ZD+) according to (20),
i.e., f̃ (·) = f̃a(·). The minimization constraint set in
(59),

{
f̃ (·) ∈ HLGM,x0

∣
∣ f̃ (·)∣∣XS

= γ (·)}, equals the set
{

f̃a(·) ∈ HLGM,x0

∣
∣ a[·] ∈ C(c)

}
. Moreover,

∥
∥ f̃a(·)

∥
∥2
HLGM,x0

=
‖a[·]‖2

�2(ZD+ )
(see (22)). Therefore, (59) can be reformulated as

MSLGM(c(·), x0) = min
a[·]∈C(c)

‖a[·]‖2
�2(ZD+ )

− γ 2(x0),

which is (25).
2) Consider the congruence J[·] from HLGM,x0 into

the space LELGM,x0 consisting of finite-variance estimators
(cf. (11)). As verified in [22, Sec. 5.3], the estimator ĝ(y)
in (26) satisfies ĝ(·) = J[ f̃a(·)], i.e., it is the image of
the function f̃a(·) (defined in (20)) under the congruence
J[·]. Comparing with (14), we conclude that ĝ(y) is the
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LMV estimator at x0 for the LGM and for the bias function
f̃a(x)− g(x), which coincides with c(x) for any x ∈ XS due
to the constraint a[·] ∈ C(c). Therefore, ĝ(y) is trivially an
allowed estimator (i.e., having finite variance at x0 and the
prescribed bias) for the LGM. But an allowed estimator for
the LGM is also an allowed estimator for the SLGM (since
the SLGM is obtained by reducing the parameter set of the
LGM). Therefore, the estimator (26) is an allowed estimator
at x0 for the SLGM and bias function c(·).

3) Any estimator ĝ(y) given by (26) for a coefficient
sequence a[·] ∈ C(c) yields the bias c(x) for all x ∈ XS

and its variance at x0 is equal to ‖a[·]‖2
�2(ZD+ )

− γ 2(x0).

According to (25), the minimum achievable variance at x0
is given by the minimum of ‖a[·]‖2

�2(ZD+)
− γ 2(x0) over all

a[·] ∈ C(c). Therefore, the LMV estimator for the SLGM
and bias function c(·) is given by (26) using the specific
coefficient sequence a[·] ∈ C(c) that minimizes ‖a[·]‖2

�2(ZD+ )
,

implying that the estimator variance achieves the minimum
achievable variance (25). This minimizing sequence a[·] is
unique, due to the uniqueness of the LMV estimator [19,
p. 85] and the uniqueness of the coefficient sequence in the
representation (58).

APPENDIX C
PROOF OF COROLLARY III.4

We first note that our assumption that the prescribed bias
function c(·) is valid for ESLGM at every x ∈ XS has
two consequences. First, MSLGM(c(·), x) < ∞ for every
x ∈ XS (cf. our definition of the validity of a bias function in
Section II-B) and therefore, MSLGM(c(·), x) is a well-defined
function of x; second, due to (12), the prescribed mean
function γ (·) = c(·) + g(·) belongs to HSLGM,x for every
x ∈ XS .

A. Representation of MSLGM(c(·), x)

Let us denote by Lx the set of all functions f (·) : X → R

that are finite linear combinations of the form

f (·)=
∑

l∈[L]
al RSLGM,x(·, xl), with xl ∈ XS , al ∈ R, L ∈ N.

(60)

As shown in [22, Th. 3.2.2], the set Lx spans HSLGM,x. Hence
[31, Ch. 4], the squared norm of any function h(·) ∈ HSLGM,x
can be expressed as

‖h(·)‖2
HSLGM,x

= sup
f (·)∈Lx

‖ f (·)‖2
HSLGM,x

>0

〈h(·), f (·)〉2
HSLGM,x

‖ f (·)‖2
HSLGM,x

. (61)

We can now develop the minimum achievable variance
MSLGM(c(·), x) as follows:

MSLGM(c(·), x)
(13)= ‖γ (·)‖2

HSLGM,x
− γ 2(x)

(61)= sup
f (·)∈Lx

‖ f (·)‖2
HSLGM,x

>0

〈γ (·), f (·)〉2
HSLGM,x

‖ f (·)‖2
HSLGM,x

−γ 2(x).

Here, it was possible to use (61) because γ (·) ∈ HSLGM,x.
Using (60) and letting D � {x1, . . . , xL}, a � (a1 · · · aL)

T,
and AD �

{
a ∈ R

L
∣
∣
∥
∥
∑

l∈[L] al RSLGM,x(·, xl)
∥
∥
HSLGM,x

> 0
}
,

we obtain further

MSLGM(c(·), x) = sup
D⊆X ,L∈N,a∈AD

hD,a(x), (62)

with

hD,a(x) �
〈
γ (·),∑l∈[L] al RSLGM,x(·, xl)

〉2
HSLGM,x

∥
∥
∑

l∈[L] al RSLGM,x(·, xl)
∥
∥2
HSLGM,x

− γ 2(x).

Our notation supD⊆X ,L∈N,a∈AD in (62) indicates that the
supremum is taken not only with respect to the elements xl

of D but also with respect to the size of D, L = |D|. For
any finite set D = {x1, . . . , xL} ⊆ X and any a ∈ AD, it
follows from the continuity of RSLGM,x(·, ·) with respect to
x on XS (see (18)) and our assumption of continuity of c(·)
(and, therefore, of γ (x) = c(x)+ xk) that the function hD,a(x)
is continuous in a neighborhood around any point x0 ∈ XS .
Thus, for any x0 ∈ XS , there exists a radius δ0 > 0 such
that hD,a(x) is continuous on B(x0, δ0)∩XS , where B(x0, δ0)
denotes the open ball of radius δ0 around x0.

B. Lower Semi-Continuity of MSLGM(c(·), x)

We will now show that the function MSLGM(c(·), x) given
by (62) is lower semi-continuous [59] at every x0 ∈ XS , which
means that for any x0 ∈ XS and ε > 0 there is a radius r > 0
such that

MSLGM(c(·), x) ≥ MSLGM(c(·), x0) − ε,

for all x ∈ B(x0, r) ∩ XS . (63)

Due to (62), there must be a finite subset D0 ⊆ XS and a
vector a0 ∈ AD0 such that11

hD0,a0(x0) ≥ MSLGM(c(·), x0)− ε

2
, (64)

for any given ε > 0. Furthermore, since hD0,a0(x) is continu-
ous on B(x0, δ0)∩XS as shown above, there is a radius r0 > 0
(with r0 < δ0) such that

hD0,a0(x)≥hD0,a0(x0)− ε
2
, for all x ∈ B(x0, r0)∩XS . (65)

By combining this inequality with (64), it follows that there is
a radius r > 0 (with r < δ0) such that for any x ∈ B(x0, r)∩XS

we have

hD0,a0(x)
(65)≥ hD0,a0(x0)− ε

2

(64)≥ MSLGM(c(·), x0)− ε, (66)

and further

MSLGM(c(·), x)
(62)= sup

D⊆X ,L∈N,a∈AD
hD,a(x) ≥ hD0,a0(x)

(66)≥ MSLGM(c(·), x0)− ε.

11Indeed, if (64) were not true, we would have hD,a(x0) <
MSLGM(c(·), x0) − ε/2 for every choice of D and a. This, in turn,
would imply that supD⊆X ,L∈N,a∈ADhD,a(x0) ≤ MSLGM(c(·), x0) −
ε/2 < MSLGM(c(·), x0), yielding the contradiction MSLGM(c(·), x0)

(62)=
supD⊆X ,L∈N,a∈AD hD,a(x0) < MSLGM(c(·), x0).
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Thus, for any given ε > 0, there is a radius r > 0
(with r < δ0) such that MSLGM(c(·), x) ≥ MSLGM(c(·), x0)−ε
for all x ∈ B(x0, r) ∩ XS , i.e., (63) has been proved.

APPENDIX D
PROOF OF THEOREM IV.1

Consider the subspace U = span
{
u0(·), {ũi (·)}i∈[|K|]

} ⊆
HSLGM,x0 (see (30)). According to [22, Th. 3.1.9], the squared
norm of the projection PUγ (·) of the prescribed mean function
γ (x) = c(x)+ xk onto U is given by

‖PUγ (·)‖2
HSLGM,x0

= cT G†c + γ 2(x0), (67)

where the vector c ∈ R
|K| and the matrix G ∈ R

|K|×|K|
are defined entrywise as ci � 〈γ (·), ũi (·)〉HSLGM,x0

, i ∈ [|K|]
and Gm,n � 〈ũm(·), ũn(·)〉HSLGM,x0

, m, n ∈ [|K|], respectively.
We obtain

ci
(30)=

〈

γ (·), ∂RSLGM,x0(·, x)
∂xli

∣
∣
∣
∣
x=x̃0

〉

HSLGM,x0

(a)= γ (x)
∂xli

∣
∣
∣
∣
x=x̃0

= c(x)
∂xli

∣
∣
∣
∣
x=x̃0

+ δli ,k,

for i ∈[|K|]. Here, step (a) is due to the derivative-reproducing
property [22], [58] of an RKHS associated with a differentiable
kernel function. Similarly,

Gm,n

(30)=
〈
∂RSLGM,x0(·, x1)

∂(x1)lm

∣
∣
∣
∣
x1=x̃0

,
∂RSLGM,x0(·, x2)

∂(x2)ln

∣
∣
∣
∣
x2=x̃0

〉

HSLGM,x0

= ∂RSLGM,x0(x1, x2)

∂(x1)lm ∂(x2)ln

∣
∣
∣
∣
x1=x2=x̃0

, (68)

for m, n ∈ [|K|]. Inserting (18) into (68) and using some
elementary linear algebra (see [22, p. 105]) yields

Gm,n = 1

σ 2 eT
ln HT Helm exp

(
1

σ 2 ‖H(x̃0−x0)‖2
2

)

,

where ‖H(x̃0−x0)‖2
2 = ‖PHx0−Hx0‖2

2 = ‖(I−P)Hx0‖2
2

(recall that Hx̃0 = PHx0). The bound (31) then follows upon
inserting (67) into (27).

APPENDIX E
PROOF OF COROLLARY IV.2

Let P ∈ R
M×M denote the orthogonal projection matrix

on the subspace span(HK) ⊆ R
M . Because H satisfies the

RIP of order S, HK has full column rank [21], and therefore

P = HK
(
HT
KHK

)−1HT
K. We thus obtain (I−P)HK = HK −

HK
(
HT
KHK

)−1HT
KHK = 0, and hence (I−P)x′ = 0 for every

vector x′ ∈ span(HK). This implies that

(I−P)Hx0 = (I−P)H
(
xsupp(x0)\K

0 + xK0
)

= (I−P)Hxsupp(x0)\K
0 , (69)

since HxK0 ∈ span(HK). Based on (69) and using the short-

hand x′
0 � xsupp(x0)\K

0 , we obtain
∥
∥(I−P)Hx0

∥
∥2

2 = ∥
∥(I−P)Hx′

0

∥
∥2

2

= ∥
∥Hx′

0

∥
∥2

2 − 2(x′
0)

T HT PHx′
0

+(x′
0)

T HT P2Hx′
0

(a)= ∥
∥Hx′

0

∥
∥2

2 − (x′
0)

T HT PHx′
0

(b)≤ ∥
∥Hx′

0

∥
∥2

2
(c)≤ (1 + δS)

∥
∥x′

0

∥
∥2

2, (70)

where step (a) follows from P2 = P [21], step (b) follows
from the fact that P is positive semidefinite, and step (c) is
due to ‖x′

0‖0 ≤ S and the assumption that H satisfies the
RIP (33) of order S with RIP constant δS . The bound (34)
then follows by reformulating (31) using (70):

MSLGM(c(·), x0)
(31)≥ exp

(

− 1

σ 2 ‖(I−P)Hx0‖2
2

)

σ 2bT
x0

(
HT
KHK

)−1bx0

(70)≥ exp

(

− 1 + δS

σ 2

∥
∥xsupp(x0)\K

0

∥
∥2

2

)

σ 2bT
x0

(
HT
KHK

)−1bx0 .

Since (33) implies
∥
∥HT

KHK
∥
∥

2 ≤ 1 + δS and, in turn,
∥
∥
(
HT
KHK

)−1∥∥
2 ≥ 1/(1 + δS) (here, ‖ · ‖2 denotes the spectral

matrix norm), we finally obtain (34).

APPENDIX F
PROOF OF THEOREM V.1

This proof is, in its first part, essentially analogous to that
in Appendix A; however, the domain is different (XS rather
than R

N or R
D). We will need the following lemma, which

is analogous to Lemma A.1.
Lemma F.1: The RKHS HSSNM,x0 is isometric to the RKHS

H(Re) whose kernel Re(·, ·) : XS ×XS → R is given by

Re(x1, x2) = exp
(
xT

1 x2
)
, x1, x2 ∈ XS . (71)

A congruence from H(Re) to HSSNM,x0 is constituted by the
mapping Ke[·] : H(Re) → HSSNM,x0 given by

Ke[ f (·)] = f̃ (x) � f

(
x
σ

)

νx0(x), x ∈ XS , (72)

for all f (·) ∈ H(Re), with νx0(x) � exp
( 1

2σ 2 ‖x0‖2
2 − 1

σ 2 xT x0
)
.

A congruence from HSSNM,x0 to H(Re) is constituted by the
inverse mapping K−1

e [·] : HSSNM,x0 → H(Re) given by

K−1
e [ f̃ (·)] = f (x) � f̃ (σx)

νx0(σx)
, x ∈ XS , (73)

for all f̃ (·) ∈ HSSNM,x0 .
Proof: The sets

A �
{

f̃x(·) � RSSNM,x0(·, σx)
}

x∈XS

and

B �
{

fx(·) � exp

(
1

2σ 2 ‖x0‖2
2 − 1

σ
xT x0

)

Re(·, x)
}

x∈XS
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span the RKHSs HSSNM,x0 and H(Re), respectively
[22, Sec. 5.5]. A continuous linear mapping that maps fx(·) ∈
H(Re) to f̃x(·) ∈ HSSNM,x0 for any x ∈ XS is given by Ke,
and moreover 〈 f̃x1(·), f̃x2(·)〉HSSNM,x0

= 〈 fx1(·), fx2(·)〉H(Re)

for any x1, x2 ∈ XS. Hence, according to [16, p. 263], Ke is
a congruence from H(Re) to HSSNM,x0 . A detailed proof is
provided in [22, Th. 5.2.2]. �

Note that the kernel Re in (71) is the restriction of the kernel
RG in (55) to the subdomain XS ×XS ⊆ R

N × R
N .

Due to Lemma F.1, the characterization of the RKHS
HSSNM,x0 is reduced to a characterization of the RKHS
H(Re). A simple characterization of H(Re) in terms of an
orthonormal basis can be obtained by exploiting the dif-
ferentiability of the kernel Re(·, ·). In particular, one can
show [58], [22, Th. 5.5.1] that for any p ∈ Z

N+ ∩ XS , H(Re)
contains the function r (p)(·) : XS → R given by

r (p)(x) � 1
√

p!
∂p Re(x, x2)

∂xp
2

∣
∣
∣
∣
x2=0

= 1
√

p! xp. (74)

Furthermore,
{
r (p)(·)}p∈Z

N+∩XS
is an orthonormal basis for

H(Re), and the inner product of an arbitrary function f (·) ∈
H(Re) with r (p)(·) is given by

〈
f (·), r (p)(·)〉H(Re)

= 1
√

p!
∂p f (x)
∂xp

∣
∣
∣
∣
x=0

. (75)

Hence, a function f (·) : XS → R belongs to H(Re) if and
only if it can be written pointwise as

f (x) =
∑

p ∈Z
N+∩XS

a[p] r (p)(x) =
∑

p∈Z
N+∩XS

a[p]
√

p! xp, (76)

with a unique coefficient sequence a[p] ∈ �2(ZN+ ∩ XS) that
is given by (75), i.e.,

a[p] = 1
√

p!
∂p f (x)
∂xp

∣
∣
∣
∣
x=0

. (77)

We are now ready to prove the claims made in the theorem.
To show (37), we note that according to (12), a prescribed bias
function c(·) : XS → R is valid for ESSNM at x0 if and only
if the corresponding mean function γ (·) = c(·)+ g(·) belongs
to HSSNM,x0 . Furthermore, due to Lemma F.1, any function
γ (·) ∈ HSSNM,x0 is the image Ke[ f (·)] of some function
f (·) ∈ H(Re) under the congruence Ke in (72), i.e.,

γ (x) = f

(
x
σ

)

νx0(x)

(76)= νx0(x)
∑

p ∈Z
N+∩XS

a[p] r (p)
(

x
σ

)

= νx0(x)
∑

p∈Z
N+∩XS

a[p]
√

p!
(

x
σ

)p

, (78)

with a unique coefficient sequence a[p] ∈ �2(ZN+ ∩ XS).
Next, we will show (39) and (40). Consider a prescribed

bias function c(·) that is valid for ESSNM at x0, i.e., the
corresponding mean function γ (·) = c(·) + g(·) is given
by (78). Then, since Ke[·] is a congruence and the coefficients

a[p] are the expansion coefficients of the function f (·) with
respect to the orthonormal basis

{
r (p)(·)}p∈Z

N+∩XS
, we have

‖γ (·)‖2
HSSNM,x0

= ‖Ke[ f (·)]‖2
HSSNM,x0

= ‖ f (·)‖2
H(Re)

= ‖a[·]‖2
�2(ZN+∩XS)

. (79)

The expression (39) for the minimum achievable variance
MSSNM(c(·), x0) then follows by

MSSNM(c(·), x0)
(13)= ‖γ (·)‖2

HSSNM,x0
− γ 2(x0)

(79)= ‖a[·]‖2
�2(ZN+∩XS)

− γ 2(x0).

Furthermore, the expression (40) for the coefficients a[p]
follows from (77) and (73), i.e.,

a[p] = 1
√

p!
∂p
(
γ (σx)/νx0(σx)

)

∂xp

∣
∣
∣
∣
x=0

.

Finally, to derive (41), we insert (78) into (14):

ĝ(c(·),x0)(y)
(14)= J[γ (·)]
(78)= J

[

νx0(x)
∑

p ∈Z
N+∩XS

a[p] r (p)
(

x
σ

)]

=
∑

p∈Z
N+∩XS

a[p] J
[

νx0(x) r (p)
(

x
σ

)]

. (80)

We have

νx0(x) r (p)
(

x
σ

)

(38),(74)= exp

(
1

2σ 2 ‖x0‖2
2 − 1

σ 2 xT x0

)
1

√
p!
(

x
σ

)p

= 1
√

p! exp

(

− 1

2σ 2 ‖x0‖2
2

)

exp

(
1

σ 2 ‖x0‖2
2 − 1

σ 2 xT x0

)

×∂
p exp

( 1
σ x̃T x

)

∂ x̃p

∣
∣
∣
∣
x̃=0

= 1
√

p! exp

(

− 1

2σ 2 ‖x0‖2
2

)

×∂
p exp

( 1
σ 2 (x − x0)

T (σ x̃ − x0)+ 1
σ xT

0 x̃
)

∂ x̃p

∣
∣
∣
∣
x̃=0

(36)= 1
√

p! exp

(

− 1

2σ 2 ‖x0‖2
2

)

×∂
p
[
RSSNM,x0(x, σ x̃) exp

( 1
σ xT

0 x̃
)]

∂ x̃p

∣
∣
∣
∣
x̃=0

.

Hence,

J
[

νx0(x) r (p)
(

x
σ

)]

= 1
√

p! exp

(

− 1

2σ 2 ‖x0‖2
2

)

×J
[
∂p
[
RSSNM,x0(x, σ x̃) exp

( 1
σ xT

0 x̃
)]

∂ x̃p

∣
∣
∣
∣
x̃=0

]

(∗)= 1
√

p! exp

(

− 1

2σ 2 ‖x0‖2
2

)
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×∂
pJ
[
RSSNM,x0(x, σ x̃)

]
exp

( 1
σ xT

0 x̃
)

∂ x̃p

∣
∣
∣
∣
x̃=0

(11)= 1
√

p! exp

(

− 1

2σ 2 ‖x0‖2
2

)

×∂
p
[
ρSSNM,x0(y, σ x̃) exp

( 1
σ xT

0 x̃
)]

∂ x̃p

∣
∣
∣
∣
x̃=0

,

where the derivative-reproducing property of the RKHS
HSSNM,x0 [58] has been used in (*). Inserting ρSSNM,x0(y, x)=
exp

(− 1
2σ 2

[
2yT (x0 − x) + ‖x‖2

2 − ‖x0‖2
2

])
(note that this is

ρLGM,x0(y, x) in (16) for H = I) and using (42), we obtain
further

J
[

νx0(x) r (p)
(

x
σ

)]

= 1
√

p!
∂pψx0(x̃, y)

∂ x̃p

∣
∣
∣
∣
x̃=0

. (81)

Finally, inserting (81) into (80) yields (41).
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